These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28696834)

  • 1. Simultaneous detection of the tetrachloroethylene metabolites S-(1,2,2-trichlorovinyl) glutathione, S-(1,2,2-trichlorovinyl)-L-cysteine, and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine in multiple mouse tissues via ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry.
    Luo YS; Cichocki JA; McDonald TJ; Rusyn I
    J Toxicol Environ Health A; 2017; 80(9):513-524. PubMed ID: 28696834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene.
    Luo YS; Cichocki JA; Hsieh NH; Lewis L; Wright FA; Threadgill DW; Chiu WA; Rusyn I
    Environ Health Perspect; 2019 Jun; 127(6):67011. PubMed ID: 31246107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of perchloroethene: dose-dependent excretion of trichloroacetic acid, dichloroacetic acid, and N-acetyl-S-(trichlorovinyl)-L-cysteine in rats and humans after inhalation.
    Völkel W; Friedewald M; Lederer E; Pähler A; Parker J; Dekant W
    Toxicol Appl Pharmacol; 1998 Nov; 153(1):20-7. PubMed ID: 9875296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Tetrachloroethylene-Associated Kidney Effects by Nonalcoholic Fatty Liver or Steatohepatitis in Male C57BL/6J Mice.
    Cichocki JA; Luo YS; Furuya S; Venkatratnam A; Konganti K; Chiu WA; Threadgill DW; Pogribny IP; Rusyn I
    Toxicol Sci; 2019 Jan; 167(1):126-137. PubMed ID: 30202895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactivation of tetrachloroethylene. Role of glutathione S-transferase-catalyzed conjugation versus cytochrome P-450-dependent phospholipid alkylation.
    Dekant W; Martens G; Vamvakas S; Metzler M; Henschler D
    Drug Metab Dispos; 1987; 15(5):702-9. PubMed ID: 2891489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitation of the tetrachloroethylene metabolite N-acetyl-S-(trichlorovinyl)cysteine in rat urine via negative ion chemical ionization gas chromatography/tandem mass spectrometry.
    Bartels MJ
    Biol Mass Spectrom; 1994 Nov; 23(11):689-94. PubMed ID: 7811758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of S-1,2,2-trichlorovinyl-N-acetylcysteine as a urinary metabolite of tetrachloroethylene: bioactivation through glutathione conjugation as a possible explanation of its nephrocarcinogenicity.
    Dekant W; Metzler M; Henschler D
    J Biochem Toxicol; 1986 Jun; 1(2):57-72. PubMed ID: 3271876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal toxicity of perchloroethylene and S-(1,2,2-trichlorovinyl)glutathione in rats and mice: sex- and species-dependent differences.
    Lash LH; Qian W; Putt DA; Hueni SE; Elfarra AA; Sicuri AR; Parker JC
    Toxicol Appl Pharmacol; 2002 Mar; 179(3):163-71. PubMed ID: 11906246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine and 2,2,2-trichloroethanol: two novel metabolites of tetrachloroethene in humans after occupational exposure.
    Birner G; Rutkowska A; Dekant W
    Drug Metab Dispos; 1996 Jan; 24(1):41-8. PubMed ID: 8825189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of a harmonized physiologically based pharmacokinetic (PBPK) model for perchloroethylene toxicokinetics in mice, rats, and humans.
    Chiu WA; Ginsberg GL
    Toxicol Appl Pharmacol; 2011 Jun; 253(3):203-34. PubMed ID: 21466818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione conjugation of perchloroethylene in rats and mice in vitro: sex-, species-, and tissue-dependent differences.
    Lash LH; Qian W; Putt DA; Desai K; Elfarra AA; Sicuri AR; Parker JC
    Toxicol Appl Pharmacol; 1998 May; 150(1):49-57. PubMed ID: 9630452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenicity of the glutathione and cysteine S-conjugates of the haloalkenes 1,1,2-trichloro-3,3,3-trifluoro-1-propene and trichlorofluoroethene in the Ames test in comparison with the tetrachloroethene-analogues.
    Dreessen B; Westphal G; Bünger J; Hallier E; Müller M
    Mutat Res; 2003 Aug; 539(1-2):157-66. PubMed ID: 12948824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive profiling of mercapturic acid metabolites from dietary acrylamide as short-term exposure biomarkers for evaluation of toxicokinetics in rats and daily internal exposure in humans using isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry.
    Zhang Y; Wang Q; Cheng J; Zhang J; Xu J; Ren Y
    Anal Chim Acta; 2015 Sep; 894():54-64. PubMed ID: 26423628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione conjugation of perchloroethene in subcellular fractions from rodent and human liver and kidney.
    Dekant W; Birner G; Werner M; Parker J
    Chem Biol Interact; 1998 Nov; 116(1-2):31-43. PubMed ID: 9877199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity assessments of selected trichloroethylene and perchloroethylene metabolites in three in vitro human placental models.
    Elkin ER; Su AL; Kilburn BA; Bakulski KM; Armant DR; Loch-Caruso R
    Reprod Toxicol; 2022 Apr; 109():109-120. PubMed ID: 35304307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for the analysis of styrene mercapturic acids by liquid chromatography/electrospray tandem mass spectrometry.
    Manini P; Andreoli R; Bergamaschi E; De Palma G; Mutti A; Niessen WM
    Rapid Commun Mass Spectrom; 2000; 14(21):2055-60. PubMed ID: 11085418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas chromatography-negative ion chemical ionization mass spectrometry as a powerful tool for the detection of mercapturic acids and DNA and protein adducts as biomarkers of exposure to halogenated olefins.
    Völkel W; Pähler A; Dekant W
    J Chromatogr A; 1999 Jun; 847(1-2):35-46. PubMed ID: 10431350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-(1,2,2-trichlorovinyl)-L-cysteine sulfoxide, a reactive metabolite of S-(1,2,2-Trichlorovinyl)-L-cysteine formed in rat liver and kidney microsomes, is a potent nephrotoxicant.
    Elfarra AA; Krause RJ
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1095-101. PubMed ID: 17347324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous determination of mercapturic acids derived from ethylene oxide (HEMA), propylene oxide (2-HPMA), acrolein (3-HPMA), acrylamide (AAMA) and N,N-dimethylformamide (AMCC) in human urine using liquid chromatography/tandem mass spectrometry.
    Schettgen T; Musiol A; Kraus T
    Rapid Commun Mass Spectrom; 2008 Sep; 22(17):2629-38. PubMed ID: 18666198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid chromatography electrospray ionization tandem mass spectrometry analysis method for simultaneous detection of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine.
    Kim S; Collins LB; Boysen G; Swenberg JA; Gold A; Ball LM; Bradford BU; Rusyn I
    Toxicology; 2009 Aug; 262(3):230-8. PubMed ID: 19549554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.