These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28697303)

  • 1. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability.
    Sun YT; Bai HY; Li MZ; Wang WH
    J Phys Chem Lett; 2017 Jul; 8(14):3434-3439. PubMed ID: 28697303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-guided exploration and experimental assessment of unreported compositions in the quaternary Ti-Zr-Cu-Pd biocompatible metallic glass system.
    Douest Y; Forrest RM; Ter-Ovanessian B; Courtois N; Tancret F; Greer AL; Chevalier J; Fabrègue D
    Acta Biomater; 2024 Feb; 175():411-421. PubMed ID: 38135205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al.
    An Q; Samwer K; Goddard WA; Johnson WL; Jaramillo-Botero A; Garret G; Demetriou MD
    J Phys Chem Lett; 2012 Nov; 3(21):3143-8. PubMed ID: 26296020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-learning improves understanding of glass formation in metallic systems.
    Forrest RM; Greer AL
    Digit Discov; 2022 Aug; 1(4):476-489. PubMed ID: 36091413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven machine learning prediction of glass transition temperature and the glass-forming ability of metallic glasses.
    Zhang J; Zhao M; Zhong C; Liu J; Hu K; Lin X
    Nanoscale; 2023 Nov; 15(45):18511-18522. PubMed ID: 37946543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses.
    Zhang K; Fan M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Nov; 143(18):184502. PubMed ID: 26567672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses.
    Ghorbani A; Askari A; Malekan M; Nili-Ahmadabadi M
    Sci Rep; 2022 Jul; 12(1):11754. PubMed ID: 35817887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale mechanisms of the glass-forming ability in metallic glasses.
    Yang L; Guo GQ; Chen LY; Huang CL; Ge T; Chen D; Liaw PK; Saksl K; Ren Y; Zeng QS; LaQua B; Chen FG; Jiang JZ
    Phys Rev Lett; 2012 Sep; 109(10):105502. PubMed ID: 23005298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses.
    Wen T; Yao W; Wang N
    Sci Rep; 2017 Oct; 7(1):13164. PubMed ID: 29030595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles prediction and experimental verification of glass-forming ability in Zr-Cu binary metallic glasses.
    Yu CY; Liu XJ; Lu J; Zheng GP; Liu CT
    Sci Rep; 2013; 3():2124. PubMed ID: 23821016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational predictions of glass-forming ability and crystallization tendency of drug molecules.
    Alhalaweh A; Alzghoul A; Kaialy W; Mahlin D; Bergström CA
    Mol Pharm; 2014 Sep; 11(9):3123-32. PubMed ID: 25014125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation theory.
    Sato Y; Nakai C; Wakeda M; Ogata S
    Sci Rep; 2017 Aug; 7(1):7194. PubMed ID: 28775268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Many Bulk Metallic Glasses Are There?
    Li Y; Zhao S; Liu Y; Gong P; Schroers J
    ACS Comb Sci; 2017 Nov; 19(11):687-693. PubMed ID: 28902986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalously slow crystal growth of the glass-forming alloy CuZr.
    Tang C; Harrowell P
    Nat Mater; 2013 Jun; 12(6):507-11. PubMed ID: 23624630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing.
    Zhang K; Dice B; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Aug; 143(5):054501. PubMed ID: 26254655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the glass forming ability of liquid alloys.
    Waseda Y; Chen HS; Thomas Jacob K; Shibata H
    Sci Technol Adv Mater; 2008 Apr; 9(2):023003. PubMed ID: 27877951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases.
    Perim E; Lee D; Liu Y; Toher C; Gong P; Li Y; Simmons WN; Levy O; Vlassak JJ; Schroers J; Curtarolo S
    Nat Commun; 2016 Aug; 7():12315. PubMed ID: 27480126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Glass-Forming Ability of Pharmaceutical Compounds by Using Machine Learning Technologies.
    Jiang J; Ouyang D; Williams RO
    AAPS PharmSciTech; 2023 Apr; 24(5):103. PubMed ID: 37072563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass forming ability and alloying effect of a noble-metal-based glass former.
    Gonçalves LG; DaSilva CJ; Rino JP
    J Phys Chem B; 2012 Feb; 116(4):1356-9. PubMed ID: 22204441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing.
    Bordeenithikasem P; Liu J; Kube SA; Li Y; Ma T; Scanley BE; Broadbridge CC; Vlassak JJ; Singer JP; Schroers J
    Sci Rep; 2017 Aug; 7(1):7155. PubMed ID: 28769093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.