BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28698229)

  • 1. Changes in the phosphoproteome of brown adipose tissue during hibernation in the ground squirrel,
    Herinckx G; Hussain N; Opperdoes FR; Storey KB; Rider MH; Vertommen D
    Physiol Genomics; 2017 Sep; 49(9):462-472. PubMed ID: 28698229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the mitochondrial phosphoproteome during mammalian hibernation.
    Chung DJ; Szyszka B; Brown JC; Hüner NP; Staples JF
    Physiol Genomics; 2013 May; 45(10):389-99. PubMed ID: 23572536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function.
    Ballinger MA; Hess C; Napolitano MW; Bjork JA; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2016 Aug; 311(2):R325-36. PubMed ID: 27225952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation.
    Horman S; Hussain N; Dilworth SM; Storey KB; Rider MH
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Dec; 142(4):374-82. PubMed ID: 16202635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.
    Biggar Y; Storey KB
    Cryobiology; 2014 Oct; 69(2):333-8. PubMed ID: 25192827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cAMP-dependent protein kinase from brown adipose tissue: temperature effects on kinetic properties and enzyme role in hibernating ground squirrels.
    MacDonald JA; Storey KB
    J Comp Physiol B; 1998 Oct; 168(7):513-25. PubMed ID: 9810716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays.
    Yan J; Burman A; Nichols C; Alila L; Showe LC; Showe MK; Boyer BB; Barnes BM; Marr TG
    Physiol Genomics; 2006 Apr; 25(2):346-53. PubMed ID: 16464973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of pyruvate dehydrogenase (PDH) in the hibernating ground squirrel, (Ictidomys tridecemlineatus).
    Wijenayake S; Tessier SN; Storey KB
    J Therm Biol; 2017 Oct; 69():199-205. PubMed ID: 29037383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.
    Rouble AN; Storey KB
    Cryobiology; 2015 Oct; 71(2):334-43. PubMed ID: 26277038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of adipose- and heart-type fatty acid binding proteins in hibernating ground squirrels.
    Hittel D; Storey KB
    Biochim Biophys Acta; 2001 Dec; 1522(3):238-43. PubMed ID: 11779641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific response of carbohydrate-responsive element binding protein (ChREBP) to mammalian hibernation in 13-lined ground squirrels.
    Logan SM; Storey KB
    Cryobiology; 2016 Oct; 73(2):103-11. PubMed ID: 27614289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels.
    Hindle AG; Grabek KR; Epperson LE; Karimpour-Fard A; Martin SL
    Physiol Genomics; 2014 May; 46(10):348-61. PubMed ID: 24642758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure.
    MacCannell A; Sinclair K; Friesen-Waldner L; McKenzie CA; Staples JF
    J Comp Physiol B; 2017 Jul; 187(5-6):759-767. PubMed ID: 28324157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifts in metabolic fuel use coincide with maximal rates of ventilation and body surface rewarming in an arousing hibernator.
    Regan MD; Chiang E; Martin SL; Porter WP; Assadi-Porter FM; Carey HV
    Am J Physiol Regul Integr Comp Physiol; 2019 Jun; 316(6):R764-R775. PubMed ID: 30969844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation.
    Hindle AG; Martin SL
    Am J Physiol Endocrinol Metab; 2014 Feb; 306(3):E284-99. PubMed ID: 24326419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5'-Adenosine monophosphate deaminase regulation in ground squirrels during hibernation.
    Abnous K; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 253():110543. PubMed ID: 33301876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of glycerol-3-phosphate dehydrogenase from the liver of the hibernating ground squirrel, Urocitellus richardsonii.
    Ruberto AA; Childers CL; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Dec; 202():48-55. PubMed ID: 27521690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of adipocyte stress response pathways during hibernation in thirteen-lined ground squirrels.
    Rouble AN; Tessier SN; Storey KB
    Mol Cell Biochem; 2014 Aug; 393(1-2):271-82. PubMed ID: 24777704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brown fat thermogenesis during hibernation and arousal in Richardson's ground squirrel.
    Milner RE; Wang LC; Trayhurn P
    Am J Physiol; 1989 Jan; 256(1 Pt 2):R42-8. PubMed ID: 2912224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature's fat-burning machine: brown adipose tissue in a hibernating mammal.
    Ballinger MA; Andrews MT
    J Exp Biol; 2018 Mar; 221(Pt Suppl 1):. PubMed ID: 29514878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.