BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 28698532)

  • 1. A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm.
    Kim SD; Koo Y; Yun Y
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A remote computing based point-of-care colorimetric detection system with a smartphone under complex ambient light conditions.
    Bao X; Jiang S; Wang Y; Yu M; Han J
    Analyst; 2018 Mar; 143(6):1387-1395. PubMed ID: 29451280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel systems solution for accurate colorimetric measurement through smartphone-based augmented reality.
    Zhang G; Song S; Panescu J; Shapiro N; Dannemiller KC; Qin R
    PLoS One; 2023; 18(6):e0287099. PubMed ID: 37319291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices.
    Lopez-Ruiz N; Curto VF; Erenas MM; Benito-Lopez F; Diamond D; Palma AJ; Capitan-Vallvey LF
    Anal Chem; 2014 Oct; 86(19):9554-62. PubMed ID: 25158126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone.
    Chen Y; Fu Q; Li D; Xie J; Ke D; Song Q; Tang Y; Wang H
    Anal Bioanal Chem; 2017 Nov; 409(28):6567-6574. PubMed ID: 28871402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A smart phone-based robust correction algorithm for the colorimetric detection of Urinary Tract Infection.
    Karlsen H; Tao Dong
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1251-4. PubMed ID: 26736494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing.
    Wang X; Chang TW; Lin G; Gartia MR; Liu GL
    Anal Chem; 2017 Jan; 89(1):611-615. PubMed ID: 27976865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regression Analysis of Orthogonal, Cylindrical and Multivariable Color Parameters for Colorimetric Surface pH Measurement of Materials.
    Vizárová K; Vajová I; Krivoňáková N; Tiňo R; Takáč Z; Vodný Š; Katuščák S
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point-of-care colorimetric detection with a smartphone.
    Shen L; Hagen JA; Papautsky I
    Lab Chip; 2012 Nov; 12(21):4240-3. PubMed ID: 22996728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones.
    Nelis JLD; Bura L; Zhao Y; Burkin KM; Rafferty K; Elliott CT; Campbell K
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg
    Monisha ; Shrivas K; Kant T; Patel S; Devi R; Dahariya NS; Pervez S; Deb MK; Rai MK; Rai J
    J Hazard Mater; 2021 Jul; 414():125440. PubMed ID: 33684821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-based colorimetric detection platform using color correction algorithms to reduce external interference.
    Meng R; Yu Z; Fu Q; Fan Y; Fu L; Ding Z; Yang S; Cao Z; Jia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124350. PubMed ID: 38692108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry.
    Calabria D; Caliceti C; Zangheri M; Mirasoli M; Simoni P; Roda A
    Biosens Bioelectron; 2017 Aug; 94():124-130. PubMed ID: 28267667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination.
    Ra M; Muhammad MS; Lim C; Han S; Jung C; Kim WY
    IEEE J Transl Eng Health Med; 2018; 6():2800111. PubMed ID: 29333352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Estimation of Lead Ion Concentration Using Smartphone-Based Colorimetric Analysis and a Machine Learning Approach.
    Sajed S; Kolahdouz M; Sadeghi MA; Razavi SF
    ACS Omega; 2020 Oct; 5(42):27675-27684. PubMed ID: 33134731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Colorimetric Detection of Thiosulfate by Using Silver Nanoparticles for Smartphone-Based Analysis.
    Dong C; Wang Z; Zhang Y; Ma X; Iqbal MZ; Miao L; Zhou Z; Shen Z; Wu A
    ACS Sens; 2017 Aug; 2(8):1152-1159. PubMed ID: 28722404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the smartphone-based colorimetry for multi-analyte sensing arrays.
    Hong JI; Chang BY
    Lab Chip; 2014 May; 14(10):1725-32. PubMed ID: 24671456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-based colorimetric detection via machine learning.
    Mutlu AY; Kılıç V; Özdemir GK; Bayram A; Horzum N; Solmaz ME
    Analyst; 2017 Jul; 142(13):2434-2441. PubMed ID: 28597010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-based colorimetric detection system for portable health tracking.
    Balbach S; Jiang N; Moreddu R; Dong X; Kurz W; Wang C; Dong J; Yin Y; Butt H; Brischwein M; Hayden O; Jakobi M; Tasoglu S; Koch AW; Yetisen AK
    Anal Methods; 2021 Oct; 13(38):4361-4369. PubMed ID: 34494633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving Color Reproducibility between Digital Devices: A Robust Approach of Smartphones Color Management for Chemical (Bio)Sensors.
    Cebrián P; Pérez-Sienes L; Sanz-Vicente I; López-Molinero Á; de Marcos S; Galbán J
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.