These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 28698552)
1. SmMYB36, a Novel R2R3-MYB Transcription Factor, Enhances Tanshinone Accumulation and Decreases Phenolic Acid Content in Salvia miltiorrhiza Hairy Roots. Ding K; Pei T; Bai Z; Jia Y; Ma P; Liang Z Sci Rep; 2017 Jul; 7(1):5104. PubMed ID: 28698552 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Xing B; Liang L; Liu L; Hou Z; Yang D; Yan K; Zhang X; Liang Z Plant Cell Rep; 2018 Dec; 37(12):1681-1692. PubMed ID: 30229287 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Zhang J; Zhou L; Zheng X; Zhang J; Yang L; Tan R; Zhao S Plant Cell Rep; 2017 Aug; 36(8):1297-1309. PubMed ID: 28508121 [TBL] [Abstract][Full Text] [Related]
4. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Bai Z; Li W; Jia Y; Yue Z; Jiao J; Huang W; Xia P; Liang Z Planta; 2018 Jul; 248(1):243-255. PubMed ID: 29704055 [TBL] [Abstract][Full Text] [Related]
5. SmbHLH3 acts as a transcription repressor for both phenolic acids and tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Zhang C; Xing B; Yang D; Ren M; Guo H; Yang S; Liang Z Phytochemistry; 2020 Jan; 169():112183. PubMed ID: 31704239 [TBL] [Abstract][Full Text] [Related]
6. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Zhou Y; Sun W; Chen J; Tan H; Xiao Y; Li Q; Ji Q; Gao S; Chen L; Chen S; Zhang L; Chen W Sci Rep; 2016 Mar; 6():22852. PubMed ID: 26947390 [TBL] [Abstract][Full Text] [Related]
7. MAPK3-MYB36-ARF1 module regulates the tanshinone formation in Xie Y; Liu H Plant Signal Behav; 2024 Dec; 19(1):2391659. PubMed ID: 39145499 [No Abstract] [Full Text] [Related]
8. Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots. Xing B; Yang D; Guo W; Liang Z; Yan X; Zhu Y; Liu Y Molecules; 2014 Dec; 20(1):309-24. PubMed ID: 25547728 [TBL] [Abstract][Full Text] [Related]
9. JA-Responsive Transcription Factor SmMYB97 Promotes Phenolic Acid and Tanshinone Accumulation in Li L; Wang D; Zhou L; Yu X; Yan X; Zhang Q; Li B; Liu Y; Zhou W; Cao X; Wang Z J Agric Food Chem; 2020 Dec; 68(50):14850-14862. PubMed ID: 33284615 [TBL] [Abstract][Full Text] [Related]
10. Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea. Zhang G; Sun Y; Ullah N; Kasote D; Zhu L; Liu H; Xu L Plant Physiol Biochem; 2024 Jun; 211():108671. PubMed ID: 38703500 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of SmbHLH10 enhances tanshinones biosynthesis in Salvia miltiorrhiza hairy roots. Xing B; Yang D; Yu H; Zhang B; Yan K; Zhang X; Han R; Liang Z Plant Sci; 2018 Nov; 276():229-238. PubMed ID: 30348323 [TBL] [Abstract][Full Text] [Related]
12. Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Deng C; Hao X; Shi M; Fu R; Wang Y; Zhang Y; Zhou W; Feng Y; Makunga NP; Kai G Plant Sci; 2019 Jul; 284():1-8. PubMed ID: 31084862 [TBL] [Abstract][Full Text] [Related]
13. The SmMYC2-SmMYB36 complex is involved in methyl jasmonate-mediated tanshinones biosynthesis in Salvia miltiorrhiza. Cao R; Lv B; Shao S; Zhao Y; Yang M; Zuo A; Wei J; Dong J; Ma P Plant J; 2024 Jul; 119(2):746-761. PubMed ID: 38733631 [TBL] [Abstract][Full Text] [Related]
14. A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza. Shi M; Zhu R; Zhang Y; Zhang S; Liu T; Li K; Liu S; Wang L; Wang Y; Zhou W; Hua Q; Kai G Metab Eng; 2022 Sep; 73():182-191. PubMed ID: 35934177 [TBL] [Abstract][Full Text] [Related]
15. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. Deng C; Shi M; Fu R; Zhang Y; Wang Q; Zhou Y; Wang Y; Ma X; Kai G J Exp Bot; 2020 Oct; 71(19):5948-5962. PubMed ID: 32589719 [TBL] [Abstract][Full Text] [Related]
16. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. Liu L; Yang D; Liang T; Zhang H; He Z; Liang Z Plant Cell Rep; 2016 Sep; 35(9):1933-42. PubMed ID: 27271760 [TBL] [Abstract][Full Text] [Related]
17. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Huang Q; Sun M; Yuan T; Wang Y; Shi M; Lu S; Tang B; Pan J; Wang Y; Kai G Food Chem; 2019 Feb; 274():368-375. PubMed ID: 30372953 [TBL] [Abstract][Full Text] [Related]
18. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. Sun M; Shi M; Wang Y; Huang Q; Yuan T; Wang Q; Wang C; Zhou W; Kai G J Exp Bot; 2019 Jan; 70(1):243-254. PubMed ID: 30299490 [TBL] [Abstract][Full Text] [Related]
19. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. Zheng X; Li H; Chen M; Zhang J; Tan R; Zhao S; Wang Z Plant Cell Rep; 2020 Oct; 39(10):1263-1283. PubMed ID: 32607753 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza. Gu XC; Chen JF; Xiao Y; Di P; Xuan HJ; Zhou X; Zhang L; Chen WS Plant Cell Rep; 2012 Dec; 31(12):2247-59. PubMed ID: 22926031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]