BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28698613)

  • 1. Transcriptome and metabolite analyses in Azadirachta indica: identification of genes involved in biosynthesis of bioactive triterpenoids.
    Bhambhani S; Lakhwani D; Gupta P; Pandey A; Dhar YV; Kumar Bag S; Asif MH; Kumar Trivedi P
    Sci Rep; 2017 Jul; 7(1):5043. PubMed ID: 28698613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem (Azadirachta indica).
    Pandreka A; Dandekar DS; Haldar S; Uttara V; Vijayshree SG; Mulani FA; Aarthy T; Thulasiram HV
    BMC Plant Biol; 2015 Sep; 15():214. PubMed ID: 26335498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension.
    Aarthy T; Mulani FA; Pandreka A; Kumar A; Nandikol SS; Haldar S; Thulasiram HV
    BMC Plant Biol; 2018 Oct; 18(1):230. PubMed ID: 30314459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem).
    Narnoliya LK; Rajakani R; Sangwan NS; Gupta V; Sangwan RS
    Mol Biol Rep; 2014 May; 41(5):3147-62. PubMed ID: 24477588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-tissue transcriptome analysis using hybrid-sequencing reveals potential genes and biological pathways associated with azadirachtin A biosynthesis in neem (azadirachta indica).
    Wang H; Wang N; Huo Y
    BMC Genomics; 2020 Oct; 21(1):749. PubMed ID: 33115410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica.
    Krishnan NM; Pattnaik S; Jain P; Gaur P; Choudhary R; Vaidyanathan S; Deepak S; Hariharan AK; Krishna PB; Nair J; Varghese L; Valivarthi NK; Dhas K; Ramaswamy K; Panda B
    BMC Genomics; 2012 Sep; 13():464. PubMed ID: 22958331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis).
    Ali M; Li P; She G; Chen D; Wan X; Zhao J
    Sci Rep; 2017 Nov; 7(1):16074. PubMed ID: 29167468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis.
    Tang Q; Ma X; Mo C; Wilson IW; Song C; Zhao H; Yang Y; Fu W; Qiu D
    BMC Genomics; 2011 Jul; 12():343. PubMed ID: 21729270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L.
    Lertphadungkit P; Qiao X; Sirikantaramas S; Satitpatipan V; Ye M; Bunsupa S
    Plant Cell Rep; 2021 Oct; 40(10):1845-1858. PubMed ID: 34228189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis.
    Pandreka A; Chaya PS; Kumar A; Aarthy T; Mulani FA; Bhagyashree DD; B SH; Jennifer C; Ponnusamy S; Nagegowda D; Thulasiram HV
    Phytochemistry; 2021 Apr; 184():112669. PubMed ID: 33524856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera.
    Agarwal AV; Singh D; Dhar YV; Michael R; Gupta P; Chandra D; Trivedi PK
    Plant Cell Physiol; 2018 Feb; 59(2):262-274. PubMed ID: 29165715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Metabolite and Transcriptomic Profiling Unveil a Potential Gene Network Involved in the Triterpenoid Metabolism of
    Li L; Peng M; Yan Y; Deng T; Liang Q; Tao X; Li H; Yang J; He G; Yang S; Pu X; Yang X
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791554
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera.
    Gupta P; Goel R; Agarwal AV; Asif MH; Sangwan NS; Sangwan RS; Trivedi PK
    Sci Rep; 2015 Dec; 5():18611. PubMed ID: 26688389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis.
    Jadaun JS; Sangwan NS; Narnoliya LK; Singh N; Bansal S; Mishra B; Sangwan RS
    Physiol Plant; 2017 Apr; 159(4):381-400. PubMed ID: 27580641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.
    Garg A; Agrawal L; Misra RC; Sharma S; Ghosh S
    BMC Genomics; 2015 Sep; 16(1):659. PubMed ID: 26328761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo assembly and transcriptome of Pfaffia glomerata uncovers the role of photoautotrophy and the P450 family genes in 20-hydroxyecdysone production.
    Batista DS; Koehler AD; Romanel E; de Souza VC; Silva TD; Almeida MC; Maciel TEF; Ferreira PRB; Felipe SHS; Saldanha CW; Maldaner J; Dias LLC; Festucci-Buselli RA; Otoni WC
    Protoplasma; 2019 May; 256(3):601-614. PubMed ID: 30357479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.
    Guzman F; Kulcheski FR; Turchetto-Zolet AC; Margis R
    Plant Sci; 2014 Dec; 229():238-246. PubMed ID: 25443850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids.
    Rai M; Rai A; Kawano N; Yoshimatsu K; Takahashi H; Suzuki H; Kawahara N; Saito K; Yamazaki M
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29206203
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley.
    Pensec F; Szakiel A; Pączkowski C; Woźniak A; Grabarczyk M; Bertsch C; Fischer MJ; Chong J
    J Plant Res; 2016 May; 129(3):499-512. PubMed ID: 26879930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.