These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28698677)

  • 1. Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish.
    Buckley C; Carvalho MT; Young LK; Rider SA; McFadden C; Berlage C; Verdon RF; Taylor JM; Girkin JM; Mullins JJ
    Sci Rep; 2017 Jul; 7(1):5096. PubMed ID: 28698677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo optogenetics for light-induced oxidative stress in transgenic zebrafish expressing the KillerRed photosensitizer protein.
    Teh C; Korzh V
    Methods Mol Biol; 2014; 1148():229-38. PubMed ID: 24718805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics.
    Teh C; Chudakov DM; Poon KL; Mamedov IZ; Sek JY; Shidlovsky K; Lukyanov S; Korzh V
    BMC Dev Biol; 2010 Nov; 10():110. PubMed ID: 21040591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic control of transcription in zebrafish.
    Liu H; Gomez G; Lin S; Lin S; Lin C
    PLoS One; 2012; 7(11):e50738. PubMed ID: 23226369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast light targeting for high-throughput precise control of neuronal networks.
    Faini G; Tanese D; Molinier C; Telliez C; Hamdani M; Blot F; Tourain C; de Sars V; Del Bene F; Forget BC; Ronzitti E; Emiliani V
    Nat Commun; 2023 Apr; 14(1):1888. PubMed ID: 37019891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted cell ablation in zebrafish using optogenetic transcriptional control.
    Mruk K; Ciepla P; Piza PA; Alnaqib MA; Chen JK
    Development; 2020 Jun; 147(12):. PubMed ID: 32414936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. μSPIM Toolset: A software platform for selective plane illumination microscopy.
    Saska D; Pichler P; Qian C; Buckley CL; Lagnado L
    J Neurosci Methods; 2021 Jan; 347():108952. PubMed ID: 33017646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoptogenetic ablation of neuronal mitochondria in vivo with spatiotemporal precision and controllable severity.
    Xie W; Jiao B; Bai Q; Ilin VA; Sun M; Burton CE; Kolodieznyi D; Calderon MJ; Stolz DB; Opresko PL; St Croix CM; Watkins S; Van Houten B; Bruchez MP; Burton EA
    Elife; 2020 Mar; 9():. PubMed ID: 32180546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time visualization of oxidative stress-mediated neurodegeneration of individual spinal motor neurons in vivo.
    Formella I; Svahn AJ; Radford RAW; Don EK; Cole NJ; Hogan A; Lee A; Chung RS; Morsch M
    Redox Biol; 2018 Oct; 19():226-234. PubMed ID: 30193184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice.
    Sun F; Zeng J; Jing M; Zhou J; Feng J; Owen SF; Luo Y; Li F; Wang H; Yamaguchi T; Yong Z; Gao Y; Peng W; Wang L; Zhang S; Du J; Lin D; Xu M; Kreitzer AC; Cui G; Li Y
    Cell; 2018 Jul; 174(2):481-496.e19. PubMed ID: 30007419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic precision toolkit to reveal form, function and connectivity of single neurons.
    Förster D; Kramer A; Baier H; Kubo F
    Methods; 2018 Nov; 150():42-48. PubMed ID: 30194033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber Optic-Based Photostimulation of Larval Zebrafish.
    Arrenberg AB
    Methods Mol Biol; 2016; 1451():343-54. PubMed ID: 27464820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, high-contrast, and steady volumetric imaging with Bessel-beam-based two-photon fluorescence microscopy.
    Chen Y; Luo C; Wang S; Li Y; Shen B; Hu R; Qu J; Liu L
    J Biomed Opt; 2024 Jan; 29(1):016501. PubMed ID: 38269082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light Sheet Fluorescence Microscopy (LSFM).
    Adams MW; Loftus AF; Dunn SE; Joens MS; Fitzpatrick JAJ
    Curr Protoc Cytom; 2015 Jan; 71():12.37.1-12.37.15. PubMed ID: 25559221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy.
    Panier T; Romano SA; Olive R; Pietri T; Sumbre G; Candelier R; Debrégeas G
    Front Neural Circuits; 2013; 7():65. PubMed ID: 23576959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
    Reade A; Motta-Mena LB; Gardner KH; Stainier DY; Weiner OD; Woo S
    Development; 2017 Jan; 144(2):345-355. PubMed ID: 27993986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy.
    Fu Q; Martin BL; Matus DQ; Gao L
    Nat Commun; 2016 Mar; 7():11088. PubMed ID: 27004937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Protein Cleavage in Zebrafish Embryos.
    Brown W; Albright S; Tsang M; Deiters A
    Chembiochem; 2022 Dec; 23(23):e202200297. PubMed ID: 36196665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seeing the Light: The Use of Zebrafish for Optogenetic Studies of the Heart.
    Baillie JS; Stoyek MR; Quinn TA
    Front Physiol; 2021; 12():748570. PubMed ID: 35002753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.