These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28699001)

  • 1. Identification, classification and transcriptional profiles of dirigent domain-containing proteins in sugarcane.
    Nobile PM; Bottcher A; Mayer JLS; Brito MS; Dos Anjos IA; Landell MGA; Vicentini R; Creste S; Riaño-Pachón DM; Mazzafera P
    Mol Genet Genomics; 2017 Dec; 292(6):1323-1340. PubMed ID: 28699001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families.
    Casu RE; Rae AL; Nielsen JM; Perroux JM; Bonnett GD; Manners JM
    Plant Mol Biol; 2015 Dec; 89(6):607-28. PubMed ID: 26456093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation.
    Corbin C; Drouet S; Markulin L; Auguin D; Lainé É; Davin LB; Cort JR; Lewis NG; Hano C
    Plant Mol Biol; 2018 May; 97(1-2):73-101. PubMed ID: 29713868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.).
    Ralph S; Park JY; Bohlmann J; Mansfield SD
    Plant Mol Biol; 2006 Jan; 60(1):21-40. PubMed ID: 16463097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the diversity and tissue specificity of sucrose synthase genes in the long read transcriptome of sugarcane.
    Thirugnanasambandam PP; Mason PJ; Hoang NV; Furtado A; Botha FC; Henry RJ
    BMC Plant Biol; 2019 Apr; 19(1):160. PubMed ID: 31023213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter.
    Rae AL; Perroux JM; Grof CP
    Planta; 2005 Apr; 220(6):817-25. PubMed ID: 15517352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance.
    Li Q; Chen J; Xiao Y; Di P; Zhang L; Chen W
    BMC Genomics; 2014 May; 15(1):388. PubMed ID: 24885106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.
    Ferreira SS; Hotta CT; Poelking VG; Leite DC; Buckeridge MS; Loureiro ME; Barbosa MH; Carneiro MS; Souza GM
    Plant Mol Biol; 2016 May; 91(1-2):15-35. PubMed ID: 26820137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure.
    Paniagua C; Bilkova A; Jackson P; Dabravolski S; Riber W; Didi V; Houser J; Gigli-Bisceglia N; Wimmerova M; Budínská E; Hamann T; Hejatko J
    J Exp Bot; 2017 Jun; 68(13):3287-3301. PubMed ID: 28472349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage.
    Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S
    Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of variation in the sugarcane transcriptome with sugar content.
    Thirugnanasambandam PP; Hoang NV; Furtado A; Botha FC; Henry RJ
    BMC Genomics; 2017 Nov; 18(1):909. PubMed ID: 29178834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.).
    Ralph SG; Jancsik S; Bohlmann J
    Phytochemistry; 2007 Jul; 68(14):1975-91. PubMed ID: 17590394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a sugarcane (Saccharum spp.) gene homolog to the brassinosteroid insensitive1-associated receptor kinase 1 that is associated to sugar content.
    Vicentini R; Felix Jde M; Dornelas MC; Menossi M
    Plant Cell Rep; 2009 Mar; 28(3):481-91. PubMed ID: 19096852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culm transcriptome sequencing of Badila (Saccharum officinarum L.) and analysis of major genes involved in sucrose accumulation.
    Wang JG; Zhao TT; Wang WZ; Feng CL; Feng XY; Xiong GR; Shen LB; Zhang SZ; Wang WQ; Zhang ZX
    Plant Physiol Biochem; 2019 Nov; 144():455-465. PubMed ID: 31655344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum.
    Zhang Q; Hu W; Zhu F; Wang L; Yu Q; Ming R; Zhang J
    BMC Genomics; 2016 Feb; 17():88. PubMed ID: 26830680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling.
    Casu RE; Dimmock CM; Chapman SC; Grof CP; McIntyre CL; Bonnett GD; Manners JM
    Plant Mol Biol; 2004 Mar; 54(4):503-17. PubMed ID: 15316286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane.
    Liu F; Sun T; Wang L; Su W; Gao S; Su Y; Xu L; Que Y
    BMC Genomics; 2017 Oct; 18(1):771. PubMed ID: 29020924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26-Like Intrinsic Protein to Salt and Water Stress.
    Park JW; Benatti TR; Marconi T; Yu Q; Solis-Gracia N; Mora V; da Silva JA
    PLoS One; 2015; 10(5):e0125810. PubMed ID: 25938773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes from the general phenylpropanoid and monolignol-specific metabolism in two sugarcane lignin-contrasting genotypes.
    Jardim-Messeder D; da Franca Silva T; Fonseca JP; Junior JN; Barzilai L; Felix-Cordeiro T; Pereira JC; Rodrigues-Ferreira C; Bastos I; da Silva TC; de Abreu Waldow V; Cassol D; Pereira W; Flausino B; Carniel A; Faria J; Moraes T; Cruz FP; Loh R; Van Montagu M; Loureiro ME; de Souza SR; Mangeon A; Sachetto-Martins G
    Mol Genet Genomics; 2020 May; 295(3):717-739. PubMed ID: 32124034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink.
    Chong BF; Bonnett GD; Glassop D; O'Shea MG; Brumbley SM
    Plant Biotechnol J; 2007 Mar; 5(2):240-53. PubMed ID: 17309679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.