These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 28699512)
1. A Review of the Mechanism of Action of Amphibian Antimicrobial Peptides Focusing on Peptide-Membrane Interaction and Membrane Curvature. Vineeth Kumar TV; Sanil G Curr Protein Pept Sci; 2017; 18(12):1263-1272. PubMed ID: 28699512 [TBL] [Abstract][Full Text] [Related]
2. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Koller D; Lohner K Biochim Biophys Acta; 2014 Sep; 1838(9):2250-9. PubMed ID: 24853655 [TBL] [Abstract][Full Text] [Related]
3. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Chen R; Mark AE Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557 [TBL] [Abstract][Full Text] [Related]
4. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Shai Y Biochim Biophys Acta; 1999 Dec; 1462(1-2):55-70. PubMed ID: 10590302 [TBL] [Abstract][Full Text] [Related]
6. Membrane interactions of antimicrobial peptides from Australian frogs. Fernandez DI; Gehman JD; Separovic F Biochim Biophys Acta; 2009 Aug; 1788(8):1630-8. PubMed ID: 19013126 [TBL] [Abstract][Full Text] [Related]
7. Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4. Mishig-Ochir T; Gombosuren D; Jigjid A; Tuguldur B; Chuluunbaatar G; Urnukhsaikhan E; Pathak C; Lee BJ Protein Pept Lett; 2017; 24(3):197-205. PubMed ID: 27993125 [TBL] [Abstract][Full Text] [Related]
8. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
9. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. Balleza D; Alessandrini A; Beltrán García MJ J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. Shagaghi N; Palombo EA; Clayton AHA; Bhave M World J Microbiol Biotechnol; 2018 Apr; 34(4):62. PubMed ID: 29651655 [TBL] [Abstract][Full Text] [Related]
12. Role of lipids in the interaction of antimicrobial peptides with membranes. Teixeira V; Feio MJ; Bastos M Prog Lipid Res; 2012 Apr; 51(2):149-77. PubMed ID: 22245454 [TBL] [Abstract][Full Text] [Related]
13. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Lohner K; Prossnigg F Biochim Biophys Acta; 2009 Aug; 1788(8):1656-66. PubMed ID: 19481533 [TBL] [Abstract][Full Text] [Related]
14. Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Amiche M; Galanth C Curr Pharm Biotechnol; 2011 Aug; 12(8):1184-93. PubMed ID: 21470155 [TBL] [Abstract][Full Text] [Related]
15. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components. Malmsten M Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113 [TBL] [Abstract][Full Text] [Related]
16. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694 [TBL] [Abstract][Full Text] [Related]
17. Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins. Epand RF; Umezawa N; Porter EA; Gellman SH; Epand RM Eur J Biochem; 2003 Mar; 270(6):1240-8. PubMed ID: 12631282 [TBL] [Abstract][Full Text] [Related]
18. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. Wimley WC ACS Chem Biol; 2010 Oct; 5(10):905-17. PubMed ID: 20698568 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers. Bennett WF; Hong CK; Wang Y; Tieleman DP J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120 [TBL] [Abstract][Full Text] [Related]
20. The interaction of antimicrobial peptides with membranes. Travkova OG; Moehwald H; Brezesinski G Adv Colloid Interface Sci; 2017 Sep; 247():521-532. PubMed ID: 28606715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]