BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 28699735)

  • 1. π-Conjugate Fluorophore-Tagged and Enzyme-Responsive l-Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2017 Aug; 18(8):2594-2609. PubMed ID: 28699735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent-Tagged Biodegradable Polycaprolactone Block Copolymer FRET Probe for Intracellular Bioimaging in Cancer Cells.
    Kulkarni B; Jayakannan M
    ACS Biomater Sci Eng; 2017 Sep; 3(9):2185-2197. PubMed ID: 33440566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of l-Amino-Acid-Based Hydroxyl Functionalized Biodegradable Amphiphilic Polyesters and Their Drug Delivery Capabilities to Cancer Cells.
    Saxena S; Jayakannan M
    Biomacromolecules; 2020 Jan; 21(1):171-187. PubMed ID: 31592651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.
    Kulkarni B; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Mar; 17(3):1004-16. PubMed ID: 26842888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-Responsive Theranostic FRET Probe Based on l-Aspartic Amphiphilic Polyester Nanoassemblies for Intracellular Bioimaging in Cancer Cells.
    Saxena S; Pradeep A; Jayakannan M
    ACS Appl Bio Mater; 2019 Dec; 2(12):5245-5262. PubMed ID: 35021528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells.
    Aluri R; Saxena S; Joshi DC; Jayakannan M
    Biomacromolecules; 2018 Jun; 19(6):2166-2181. PubMed ID: 29664622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melt Polycondensation Strategy for Amide-Functionalized l-Aspartic Acid Amphiphilic Polyester Nano-assemblies and Enzyme-Responsive Drug Delivery in Cancer Cells.
    Khuddus M; Jayakannan M
    Biomacromolecules; 2023 Jun; 24(6):2643-2660. PubMed ID: 37186892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.
    Aluri R; Jayakannan M
    Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells.
    Surnar B; Sharma K; Jayakannan M
    Nanoscale; 2015 Nov; 7(42):17964-79. PubMed ID: 26465291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy.
    Wang C; Wang Z; Zhao X; Yu F; Quan Y; Cheng Y; Yuan H
    Acta Biomater; 2019 Feb; 85():218-228. PubMed ID: 30557697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. l-Amino Acid Based Phenol- and Catechol-Functionalized Poly(ester-urethane)s for Aromatic π-Interaction Driven Drug Stabilization and Their Enzyme-Responsive Delivery in Cancer Cells.
    Chandra Joshi D; Ashokan A; Jayakannan M
    ACS Appl Bio Mater; 2022 Nov; 5(11):5432-5444. PubMed ID: 36318654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET in a Polymeric Nanocarrier: IR-780 and IR-780-PDMS.
    Wolf MP; Liu K; Horn TFW; Hunziker P
    Biomacromolecules; 2019 Nov; 20(11):4065-4074. PubMed ID: 31603657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. White light generation using Förster resonance energy transfer between 3-hydroxyisoquinoline and Nile Red.
    Joshi NK; Polgar AM; Steer RP; Paige MF
    Photochem Photobiol Sci; 2016 May; 15(5):609-17. PubMed ID: 26928071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescent indicator for imaging lysosomal zinc(II) with Förster resonance energy transfer (FRET)-enhanced photostability and a narrow band of emission.
    Sreenath K; Yuan Z; Allen JR; Davidson MW; Zhu L
    Chemistry; 2015 Jan; 21(2):867-74. PubMed ID: 25382395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theranostic FRET Gate to Visualize and Quantify Bacterial Membrane Breaching.
    Ghosh R; Jayakannan M
    Biomacromolecules; 2023 Feb; 24(2):739-755. PubMed ID: 36598256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and pH-tunable fluorescence nanoplatform with graphene oxide and BODIPY-conjugated polymer for cell imaging and therapy.
    Mosaiab T; In I; Park SY
    Macromol Rapid Commun; 2013 Sep; 34(17):1408-15. PubMed ID: 23900997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.