These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28699740)

  • 1. Design, Synthesis, and Evaluation of the Highly Selective and Potent G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure.
    Okawa T; Aramaki Y; Yamamoto M; Kobayashi T; Fukumoto S; Toyoda Y; Henta T; Hata A; Ikeda S; Kaneko M; Hoffman ID; Sang BC; Zou H; Kawamoto T
    J Med Chem; 2017 Aug; 60(16):6942-6990. PubMed ID: 28699740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hit-to-lead optimization and discovery of a potent, and orally bioavailable G protein coupled receptor kinase 2 (GRK2) inhibitor.
    Xu G; Gaul MD; Liu Z; DesJarlais RL; Qi J; Wang W; Krosky D; Petrounia I; Milligan CM; Hermans A; Lu HR; Huang DZ; Xu JZ; Spurlino JC
    Bioorg Med Chem Lett; 2020 Dec; 30(23):127602. PubMed ID: 33038544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of prostatic smooth muscle contraction by the inhibitor of G protein-coupled receptor kinase 2/3, CMPD101.
    Yu Q; Gratzke C; Wang Y; Herlemann A; Strittmatter F; Rutz B; Stief CG; Hennenberg M
    Eur J Pharmacol; 2018 Jul; 831():9-19. PubMed ID: 29698717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine.
    Waldschmidt HV; Homan KT; Cato MC; Cruz-Rodríguez O; Cannavo A; Wilson MW; Song J; Cheung JY; Koch WJ; Tesmer JJ; Larsen SD
    J Med Chem; 2017 Apr; 60(7):3052-3069. PubMed ID: 28323425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and efficacy of novel G protein-coupled receptor kinase 2 inhibitors.
    Carotenuto A; Cipolletta E; Gomez-Monterrey I; Sala M; Vernieri E; Limatola A; Bertamino A; Musella S; Sorriento D; Grieco P; Trimarco B; Novellino E; Iaccarino G; Campiglia P
    Eur J Med Chem; 2013 Nov; 69():384-92. PubMed ID: 24077529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of paroxetine-like inhibitors reveals new molecular insight to inhibit GRK2 with selectivity over ROCK1.
    Keretsu S; Bhujbal SP; Joo Cho S
    Sci Rep; 2019 Sep; 9(1):13053. PubMed ID: 31506468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Based Design, Synthesis, and Biological Evaluation of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors.
    Waldschmidt HV; Homan KT; Cruz-Rodríguez O; Cato MC; Waninger-Saroni J; Larimore KM; Cannavo A; Song J; Cheung JY; Kirchhoff PD; Koch WJ; Tesmer JJ; Larsen SD
    J Med Chem; 2016 Apr; 59(8):3793-807. PubMed ID: 27050625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gβγ-independent recruitment of G-protein coupled receptor kinase 2 drives tumor necrosis factor α-induced cardiac β-adrenergic receptor dysfunction.
    Vasudevan NT; Mohan ML; Gupta MK; Martelli EE; Hussain AK; Qin Y; Chandrasekharan UM; Young D; Feldman AM; Sen S; Dorn GW; Dicorleto PE; Naga Prasad SV
    Circulation; 2013 Jul; 128(4):377-87. PubMed ID: 23785004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing a structure-based docking approach to develop potent G protein-coupled receptor kinase (GRK) 2 and 5 inhibitors.
    Waldschmidt HV; Bouley R; Kirchhoff PD; Lee P; Tesmer JJG; Larsen SD
    Bioorg Med Chem Lett; 2018 May; 28(9):1507-1515. PubMed ID: 29627263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives.
    Guccione M; Ettari R; Taliani S; Da Settimo F; Zappalà M; Grasso S
    J Med Chem; 2016 Oct; 59(20):9277-9294. PubMed ID: 27362616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRK2 inhibition in heart failure: something old, something new.
    Lymperopoulos A; Rengo G; Koch WJ
    Curr Pharm Des; 2012; 18(2):186-91. PubMed ID: 22229578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Synthesis, and Structure-Activity Relationships of Pyridine-Based Rho Kinase (ROCK) Inhibitors.
    Green J; Cao J; Bandarage UK; Gao H; Court J; Marhefka C; Jacobs M; Taslimi P; Newsome D; Nakayama T; Shah S; Rodems S
    J Med Chem; 2015 Jun; 58(12):5028-37. PubMed ID: 26039570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Selective Dual ROCK1 and ROCK2 Inhibitors Using Structure-Based Drug Design.
    Hobson AD; Judge RA; Aguirre AL; Brown BS; Cui Y; Ding P; Dominguez E; DiGiammarino E; Egan DA; Freiberg GM; Gopalakrishnan SM; Harris CM; Honore MP; Kage KL; Kapecki NJ; Ling C; Ma J; Mack H; Mamo M; Maurus S; McRae B; Moore NS; Mueller BK; Mueller R; Namovic MT; Patel K; Pratt SD; Putman CB; Queeney KL; Sarris KK; Schaffter LM; Stoll V; Vasudevan A; Wang L; Wang L; Wirthl W; Yach K
    J Med Chem; 2018 Dec; 61(24):11074-11100. PubMed ID: 30384606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-permeable tastants amplify β2-adrenergic receptor signaling and delay receptor desensitization via intracellular inhibition of GRK2's kinase activity.
    Malach E; Shaul ME; Peri I; Huang L; Spielman AI; Seger R; Naim M
    Biochim Biophys Acta; 2015 Jul; 1850(7):1375-88. PubMed ID: 25857770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors.
    Pastor J; Oyarzabal J; Saluste G; Alvarez RM; Rivero V; Ramos F; Cendón E; Blanco-Aparicio C; Ajenjo N; Cebriá A; Albarrán MI; Cebrián D; Corrionero A; Fominaya J; Montoya G; Mazzorana M
    Bioorg Med Chem Lett; 2012 Feb; 22(4):1591-7. PubMed ID: 22266039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of inhibitors of the RGS homology domain of GRK2 by docking-based virtual screening.
    Echeverría E; Velez Rueda AJ; Cabrera M; Juritz E; Burghi V; Fabián L; Davio C; Lorenzano Menna P; Fernández NC
    Life Sci; 2019 Dec; 239():116872. PubMed ID: 31525427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of novel 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine derivatives as selective G-protein-coupled receptor kinase-2 and -5 inhibitors.
    Cho SY; Lee BH; Jung H; Yun CS; Ha JD; Kim HR; Chae CH; Lee JH; Seo HW; Oh KS
    Bioorg Med Chem Lett; 2013 Dec; 23(24):6711-6. PubMed ID: 24210504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2,3,5-Trisubstituted pyridines as selective AKT inhibitors-Part I: Substitution at 2-position of the core pyridine for ROCK1 selectivity.
    Lin H; Yamashita DS; Zeng J; Xie R; Wang W; Nidarmarthy S; Luengo JI; Rhodes N; Knick VB; Choudhry AE; Lai Z; Minthorn EA; Strum SL; Wood ER; Elkins PA; Concha NO; Heerding DA
    Bioorg Med Chem Lett; 2010 Jan; 20(2):673-8. PubMed ID: 20006497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors.
    Homan KT; Larimore KM; Elkins JM; Szklarz M; Knapp S; Tesmer JJ
    ACS Chem Biol; 2015 Jan; 10(1):310-9. PubMed ID: 25238254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Synthesis, In Vitro Anti-cancer Activity, ADMET Profile and Molecular Docking of Novel Triazolo[3,4-a]phthalazine Derivatives Targeting VEGFR-2 Enzyme.
    El-Helby AA; Sakr H; Ayyad RRA; El-Adl K; Ali MM; Khedr F
    Anticancer Agents Med Chem; 2018; 18(8):1184-1196. PubMed ID: 29651967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.