These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28699757)

  • 1. Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by
    Vugmeyster L; Ostrovsky D; Hoatson GL; Qiang W; Falconer IB
    J Phys Chem B; 2017 Aug; 121(30):7267-7275. PubMed ID: 28699757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Motions of Key Methyl Groups in Amyloid-β Fibrils.
    Vugmeyster L; Ostrovsky D; Clark MA; Falconer IB; Hoatson GL; Qiang W
    Biophys J; 2016 Nov; 111(10):2135-2148. PubMed ID: 27851938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility and Solvation of Amyloid-β Hydrophobic Core.
    Vugmeyster L; Clark MA; Falconer IB; Ostrovsky D; Gantz D; Qiang W; Hoatson GL
    J Biol Chem; 2016 Aug; 291(35):18484-95. PubMed ID: 27402826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MOMD Analysis of NMR Line Shapes from Aβ-Amyloid Fibrils: A New Tool for Characterizing Molecular Environments in Protein Aggregates.
    Meirovitch E; Liang Z; Freed JH
    J Phys Chem B; 2018 May; 122(18):4793-4801. PubMed ID: 29624402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR.
    Vugmeyster L; Ostrovsky D; Villafranca T; Sharp J; Xu W; Lipton AS; Hoatson GL; Vold RL
    J Phys Chem B; 2015 Nov; 119(47):14892-904. PubMed ID: 26529128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.
    Tycko R; Sciarretta KL; Orgel JP; Meredith SC
    Biochemistry; 2009 Jul; 48(26):6072-84. PubMed ID: 19358576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR.
    Balbach JJ; Ishii Y; Antzutkin ON; Leapman RD; Rizzo NW; Dyda F; Reed J; Tycko R
    Biochemistry; 2000 Nov; 39(45):13748-59. PubMed ID: 11076514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rigid Core and Flexible Surface of Amyloid Fibrils Probed by Magic-Angle-Spinning NMR Spectroscopy of Aromatic Residues.
    Becker LM; Berbon M; Vallet A; Grelard A; Morvan E; Bardiaux B; Lichtenecker R; Ernst M; Loquet A; Schanda P
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202219314. PubMed ID: 36738230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of replacing phenylalanine residues by para-substituted phenylalanines on the aggregation behavior of aβ16-22.
    Sivakamasundari C; Nandakumar S; Nagaraj R
    Protein Pept Lett; 2012 May; 19(5):551-8. PubMed ID: 21933114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning cysteine mutagenesis analysis of Abeta-(1-40) amyloid fibrils.
    Shivaprasad S; Wetzel R
    J Biol Chem; 2006 Jan; 281(2):993-1000. PubMed ID: 16263715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p.
    Chan JC; Oyler NA; Yau WM; Tycko R
    Biochemistry; 2005 Aug; 44(31):10669-80. PubMed ID: 16060675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation.
    Vugmeyster L; Fai Au D; Smith MC; Ostrovsky D
    Chemphyschem; 2022 Feb; 23(3):e202100709. PubMed ID: 34837296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented epitaxial growth of amyloid fibrils of the N27C mutant beta 25-35 peptide.
    Karsai A; Murvai U; Soós K; Penke B; Kellermayer MS
    Eur Biophys J; 2008 Sep; 37(7):1133-7. PubMed ID: 18189132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aβ(16-22) peptides can assemble into ordered β-barrels and bilayer β-sheets, while substitution of phenylalanine 19 by tryptophan increases the population of disordered aggregates.
    Xie L; Luo Y; Wei G
    J Phys Chem B; 2013 Sep; 117(35):10149-60. PubMed ID: 23926957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residue-Specific Dynamics and Local Environmental Changes in Aβ40 Oligomer and Fibril Formation.
    Liu H; Morris C; Lantz R; Kent TW; Elbassal EA; Wojcikiewicz EP; Du D
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8017-8021. PubMed ID: 29750857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of parallel beta-sheets, hydrophobic core, and loops in Alzheimer's A beta fibrils.
    Buchete NV; Hummer G
    Biophys J; 2007 May; 92(9):3032-9. PubMed ID: 17293399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy.
    Murray DT; Tycko R
    Biochemistry; 2020 Feb; 59(4):364-378. PubMed ID: 31895552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigidifying of the internal dynamics of amyloid-beta fibrils generated in the presence of synaptic plasma vesicles.
    Vugmeyster L; Au DF; Frazier B; Qiang W; Ostrovsky D
    Phys Chem Chem Phys; 2024 Feb; 26(6):5466-5478. PubMed ID: 38277177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide.
    Petkova AT; Buntkowsky G; Dyda F; Leapman RD; Yau WM; Tycko R
    J Mol Biol; 2004 Jan; 335(1):247-60. PubMed ID: 14659754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations that replace aromatic side chains promote aggregation of the Alzheimer's Aβ peptide.
    Armstrong AH; Chen J; McKoy AF; Hecht MH
    Biochemistry; 2011 May; 50(19):4058-67. PubMed ID: 21513285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.