These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28699783)

  • 1. Phytoremediation of organochlorine pesticides: Concept, method, and recent developments.
    Singh T; Singh DK
    Int J Phytoremediation; 2017 Sep; 19(9):834-843. PubMed ID: 28699783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated phytoremediation by root exudates of Sudan grass of soil organochlorine pesticides: impact on the rhizosphere microbial community.
    Zhou Y; Pan S
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):115600-115610. PubMed ID: 37884721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil plant microbe interactions in phytoremediation.
    Karthikeyan R; Kulakow PA
    Adv Biochem Eng Biotechnol; 2003; 78():51-74. PubMed ID: 12674398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.
    Abhilash PC; Jamil S; Singh N
    Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of toxic aromatic pollutants from soil.
    Singh OV; Jain RK
    Appl Microbiol Biotechnol; 2003 Dec; 63(2):128-35. PubMed ID: 12925865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process.
    C FC; Kamalesh T; Senthil Kumar P; Rangasamy G
    Environ Pollut; 2023 Sep; 333():122114. PubMed ID: 37379877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Ricinus communis L. for the Phytoremediation of Polluted Soil with Organochlorine Pesticides.
    Rissato SR; Galhiane MS; Fernandes JR; Gerenutti M; Gomes HM; Ribeiro R; de Almeida MV
    Biomed Res Int; 2015; 2015():549863. PubMed ID: 26301249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of organic contaminants in soil and groundwater.
    Reichenauer TG; Germida JJ
    ChemSusChem; 2008; 1(8-9):708-17. PubMed ID: 18698569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil.
    Kotoky R; Rajkumari J; Pandey P
    J Environ Manage; 2018 Jul; 217():858-870. PubMed ID: 29660711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds.
    Van Aken B; Doty SL
    Biotechnol Genet Eng Rev; 2010; 26():43-64. PubMed ID: 21415875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.
    Kong Z; Glick BR
    Adv Microb Physiol; 2017; 71():97-132. PubMed ID: 28760324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility.
    Islas-García A; Vega-Loyo L; Aguilar-López R; Xoconostle-Cázares B; Rodríguez-Vázquez R
    J Environ Sci Health B; 2015; 50(2):99-108. PubMed ID: 25587779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.
    Cook RL; Hesterberg D
    Int J Phytoremediation; 2013; 15(9):844-60. PubMed ID: 23819280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil.
    Qu J; Xu Y; Ai GM; Liu Y; Liu ZP
    J Environ Manage; 2015 Sep; 161():350-357. PubMed ID: 26203874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Levels and distributions of organochlorine pesticides in the soil-groundwater system of vegetable planting area in Tianjin City, Northern China.
    Pan HW; Lei HJ; He XS; Xi BD; Han YP; Xu QG
    Environ Geochem Health; 2017 Apr; 39(2):417-429. PubMed ID: 27975327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cosubstrate and bioaccessibility played in the enhanced anaerobic biodegradation of organochlorine pesticides (OCPs) in a paddy soil by nitrate and methyl-β-cyclodextrin amendments.
    Ye M; Sun M; Ni N; Chen Y; Liu Z; Gu C; Bian Y; Hu F; Li H; Kengara FO; Jiang X
    Environ Sci Pollut Res Int; 2014; 21(13):7785-96. PubMed ID: 24638834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review.
    Rostami S; Azhdarpoor A
    Chemosphere; 2019 Apr; 220():818-827. PubMed ID: 30612051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizoremediation: a beneficial plant-microbe interaction.
    Kuiper I; Lagendijk EL; Bloemberg GV; Lugtenberg BJ
    Mol Plant Microbe Interact; 2004 Jan; 17(1):6-15. PubMed ID: 14714863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-bacteria partnerships for the remediation of persistent organic pollutants.
    Arslan M; Imran A; Khan QM; Afzal M
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4322-4336. PubMed ID: 26139403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment.
    Chaudhry Q; Schröder P; Werck-Reichhart D; Grajek W; Marecik R
    Environ Sci Pollut Res Int; 2002; 9(1):4-17. PubMed ID: 11885417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.