These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 28700220)

  • 1. Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects.
    Chow C; Hegde S; Blanchard JS
    Biochemistry; 2017 Aug; 56(31):4044-4052. PubMed ID: 28700220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis.
    Bossi RT; Negri A; Tedeschi G; Mattevi A
    Biochemistry; 2002 Mar; 41(9):3018-24. PubMed ID: 11863440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.
    Uluisik R; Romero E; Gadda G
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1470-1478. PubMed ID: 28843728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Mechanistic Study of l-Aspartate Oxidase by ONIOM Method.
    Yildiz I
    ACS Omega; 2023 Jun; 8(22):19963-19968. PubMed ID: 37305300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis.
    Tedeschi G; Negri A; Ceciliani F; Mattevi A; Ronchi S
    Eur J Biochem; 1999 Mar; 260(3):896-903. PubMed ID: 10103021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermostable L-aspartate oxidase: a new tool for biotechnological applications.
    Bifulco D; Pollegioni L; Tessaro D; Servi S; Molla G
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7285-95. PubMed ID: 23371294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-aspartate oxidase from Escherichia coli. II. Interaction with C4 dicarboxylic acids and identification of a novel L-aspartate: fumarate oxidoreductase activity.
    Tedeschi G; Negri A; Mortarino M; Ceciliani F; Simonic T; Faotto L; Ronchi S
    Eur J Biochem; 1996 Jul; 239(2):427-33. PubMed ID: 8706750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.
    Gannavaram S; Sirin S; Sherman W; Gadda G
    Biochemistry; 2014 Oct; 53(41):6574-83. PubMed ID: 25243743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biochemical analyses reveal insights into covalent flavinylation of the
    Starbird CA; Maklashina E; Sharma P; Qualls-Histed S; Cecchini G; Iverson TM
    J Biol Chem; 2017 Aug; 292(31):12921-12933. PubMed ID: 28615448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family.
    Mattevi A; Tedeschi G; Bacchella L; Coda A; Negri A; Ronchi S
    Structure; 1999 Jul; 7(7):745-56. PubMed ID: 10425677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel L-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for L-aspartate production.
    Li Y; Kawakami N; Ogola HJ; Ashida H; Ishikawa T; Shibata H; Sawa Y
    Appl Microbiol Biotechnol; 2011 Jun; 90(6):1953-62. PubMed ID: 21468714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition.
    Mortarino M; Negri A; Tedeschi G; Simonic T; Duga S; Gassen HG; Ronchi S
    Eur J Biochem; 1996 Jul; 239(2):418-26. PubMed ID: 8706749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase.
    Cheng VW; Piragasam RS; Rothery RA; Maklashina E; Cecchini G; Weiner JH
    Biochemistry; 2015 Feb; 54(4):1043-52. PubMed ID: 25569225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the catalytic role of the active site residue E121 of E. coli L-aspartate oxidase.
    Tedeschi G; Nonnis S; Strumbo B; Cruciani G; Carosati E; Negri A
    Biochimie; 2010 Oct; 92(10):1335-42. PubMed ID: 20600565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes.
    Argyrou A; Blanchard JS
    Biochemistry; 2001 Sep; 40(38):11353-63. PubMed ID: 11560483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.