These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28700630)

  • 1. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
    Dembia CL; Silder A; Uchida TK; Hicks JL; Delp SL
    PLoS One; 2017; 12(7):e0180320. PubMed ID: 28700630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking.
    Panizzolo FA; Galiana I; Asbeck AT; Siviy C; Schmidt K; Holt KG; Walsh CJ
    J Neuroeng Rehabil; 2016 May; 13(1):43. PubMed ID: 27169361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of timing of hip extension assistance during loaded walking with a soft exosuit.
    Ding Y; Panizzolo FA; Siviy C; Malcolm P; Galiana I; Holt KG; Walsh CJ
    J Neuroeng Rehabil; 2016 Oct; 13(1):87. PubMed ID: 27716439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Ideal Assistive Strategies to Reduce the Metabolic Cost of Walking in the Elderly.
    Cseke B; Uchida TK; Doumit M
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2797-2805. PubMed ID: 35201978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking.
    Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ
    J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking.
    Xu R; Zuo H; Ji Y; Li Q; Wang Z; Liu H; Wang J; Wei Z; Li W; Cong L; Li H; Jin H; Wang J
    Med Sci Monit; 2021 Mar; 27():e930081. PubMed ID: 33664219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit.
    Kim J; Quinlivan BT; Deprey LA; Arumukhom Revi D; Eckert-Erdheim A; Murphy P; Orzel D; Walsh CJ
    Sci Rep; 2022 Jun; 12(1):11004. PubMed ID: 35768486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.
    Mooney LM; Herr HM
    J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the energy cost of walking in older adults using a passive hip flexion device.
    Panizzolo FA; Bolgiani C; Di Liddo L; Annese E; Marcolin G
    J Neuroeng Rehabil; 2019 Oct; 16(1):117. PubMed ID: 31615535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the metabolic cost of incline walking from muscle activity and walking mechanics.
    Silder A; Besier T; Delp SL
    J Biomech; 2012 Jun; 45(10):1842-9. PubMed ID: 22578744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of adding mass to the legs on the energetics and biomechanics of walking.
    Browning RC; Modica JR; Kram R; Goswami A
    Med Sci Sports Exerc; 2007 Mar; 39(3):515-25. PubMed ID: 17473778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.