These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28700694)
21. Determination of glycerolipid composition of rice and maize tissues using solid-phase extraction. Rizov I; Doulis A Biochem Soc Trans; 2000 Dec; 28(6):586-9. PubMed ID: 11171134 [TBL] [Abstract][Full Text] [Related]
22. The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Köllner TG; Schnee C; Gershenzon J; Degenhardt J Phytochemistry; 2004 Jul; 65(13):1895-902. PubMed ID: 15279995 [TBL] [Abstract][Full Text] [Related]
23. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition. Caprioli G; Giusti F; Ballini R; Sagratini G; Vila-Donat P; Vittori S; Fiorini D Food Chem; 2016 Feb; 192():965-71. PubMed ID: 26304436 [TBL] [Abstract][Full Text] [Related]
24. [Biochemistry of the developmental cycle of Triatoma infestans. VII. Lipid composition of the cuticle surface extracted with hexane]. Juárez P; Brenner RR; Labayén IL; Gros EG Acta Physiol Pharmacol Latinoam; 1985; 35(2):223-36. PubMed ID: 2938407 [TBL] [Abstract][Full Text] [Related]
25. Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings. Yang D; Wang N; Yan X; Shi J; Zhang M; Wang Z; Yuan H Colloids Surf B Biointerfaces; 2014 Feb; 114():241-6. PubMed ID: 24200952 [TBL] [Abstract][Full Text] [Related]
26. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi. Forfang K; Zimmermann B; Kosa G; Kohler A; Shapaval V PLoS One; 2017; 12(1):e0170611. PubMed ID: 28118388 [TBL] [Abstract][Full Text] [Related]
27. Translocation of sphingoid bases and their 1-phosphates, but not fumonisins, from roots to aerial tissues of maize seedlings watered with fumonisins. Zitomer NC; Jones S; Bacon C; Glenn AE; Baldwin T; Riley RT J Agric Food Chem; 2010 Jun; 58(12):7476-81. PubMed ID: 20486705 [TBL] [Abstract][Full Text] [Related]
28. A multigenotype maize silk expression atlas reveals how exposure-related stresses are mitigated following emergence from husk leaves. McNinch C; Chen K; Dennison T; Lopez M; Yandeau-Nelson MD; Lauter N Plant Genome; 2020 Oct; ():e20040. PubMed ID: 33090730 [TBL] [Abstract][Full Text] [Related]
29. Effect of the solvent type and temperature on phytosterol contents and compositions of wheat straw, bran, and germ extracts. Dunford NT; Irmak S; Jonnala R J Agric Food Chem; 2009 Nov; 57(22):10608-11. PubMed ID: 19848388 [TBL] [Abstract][Full Text] [Related]
30. Variation of chemical composition of the lipophilic extracts from yellow birch (Betula alleghaniensis) foliage. Lavoie JM; Stevanovic T J Agric Food Chem; 2005 Jun; 53(12):4747-56. PubMed ID: 15941310 [TBL] [Abstract][Full Text] [Related]
31. Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Gołębiowski M; Boguś MI; Paszkiewicz M; Stepnowski P Anal Bioanal Chem; 2011 Mar; 399(9):3177-91. PubMed ID: 21153591 [TBL] [Abstract][Full Text] [Related]
32. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Menezes-Benavente L; Kernodle SP; Margis-Pinheiro M; Scandalios JG Redox Rep; 2004; 9(1):29-36. PubMed ID: 15035825 [TBL] [Abstract][Full Text] [Related]
33. A comprehensive comparison of four methods for extracting lipids from Arabidopsis tissues. Kehelpannala C; Rupasinghe TWT; Hennessy T; Bradley D; Ebert B; Roessner U Plant Methods; 2020 Dec; 16(1):155. PubMed ID: 33292337 [TBL] [Abstract][Full Text] [Related]
34. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Razeq FM; Kosma DK; Rowland O; Molina I Phytochemistry; 2014 Oct; 106():188-196. PubMed ID: 25081105 [TBL] [Abstract][Full Text] [Related]
35. Changes in the composition of phospholipid fatty acids and sterols of maize root in response to monoterpenes. Zunino MP; Zygadlo JA J Chem Ecol; 2005 Jun; 31(6):1269-83. PubMed ID: 16229065 [TBL] [Abstract][Full Text] [Related]
36. Uptake and localization of gaseous phenol and p-cresol in plant leaves. Beattie GA; Seibel JR Chemosphere; 2007 Jun; 68(3):528-36. PubMed ID: 17280709 [TBL] [Abstract][Full Text] [Related]
37. Effect of fluazifop-p-butyl treatment on pigments and polyamines level within tissues of non-target maize plants. Horbowicz M; Sempruch C; Kosson R; Koczkodaj D; Walas D Pestic Biochem Physiol; 2013 Sep; 107(1):78-85. PubMed ID: 25149239 [TBL] [Abstract][Full Text] [Related]
38. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Sytykiewicz H Int J Mol Sci; 2016 Feb; 17(3):268. PubMed ID: 26907270 [TBL] [Abstract][Full Text] [Related]
39. Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. Chaffai R; Marzouk B; El Ferjani E Phytochemistry; 2005 Aug; 66(16):1903-12. PubMed ID: 16099483 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Hidalgo P; Ciudad G; Navia R Bioresour Technol; 2016 Feb; 201():360-4. PubMed ID: 26639615 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]