These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 28700708)

  • 1. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry.
    Meyer AJ; Patten C; Fregly BJ
    PLoS One; 2017; 12(7):e0179698. PubMed ID: 28700708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization.
    Ao D; Li G; Shourijeh MS; Patten C; Fregly BJ
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4235-4244. PubMed ID: 37831559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging-measured muscle parameters improved knee moment prediction of an EMG-driven model.
    Tsai LC; Colletti PM; Powers CM
    Med Sci Sports Exerc; 2012 Feb; 44(2):305-12. PubMed ID: 21775905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG; Besier TF
    J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-specific calibration of neuromuscular parameters enables neuromusculoskeletal models to estimate physiologically plausible hip joint contact forces in healthy adults.
    Hoang HX; Pizzolato C; Diamond LE; Lloyd DG
    J Biomech; 2018 Oct; 80():111-120. PubMed ID: 30213647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of muscle forces and joint moments using a forward-inverse dynamics model.
    Buchanan TS; Lloyd DG; Manal K; Besier TF
    Med Sci Sports Exerc; 2005 Nov; 37(11):1911-6. PubMed ID: 16286861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG-driven musculoskeletal model calibration with estimation of unmeasured muscle excitations
    Ao D; Vega MM; Shourijeh MS; Patten C; Fregly BJ
    Front Bioeng Biotechnol; 2022; 10():962959. PubMed ID: 36159690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity.
    Sartori M; Reggiani M; Farina D; Lloyd DG
    PLoS One; 2012; 7(12):e52618. PubMed ID: 23300725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.
    Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M
    J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Synergy Extrapolation for Predicting Unmeasured Muscle Excitations from Measured Muscle Synergies.
    Ao D; Shourijeh MS; Patten C; Fregly BJ
    Front Comput Neurosci; 2020; 14():588943. PubMed ID: 33343322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing level of neuromusculoskeletal model personalisation to investigate joint contact forces in cerebral palsy: A twin case study.
    Davico G; Pizzolato C; Lloyd DG; Obst SJ; Walsh HPJ; Carty CP
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():141-149. PubMed ID: 31877532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
    Correa TA; Baker R; Graham HK; Pandy MG
    J Biomech; 2011 Jul; 44(11):2096-105. PubMed ID: 21703627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isometric Plantarflexion Moment Prediction Based on a Compartment-Specific HD-sEMG-Driven Musculoskeletal Model.
    Zheng M; Lu P; Wu W; Song R
    IEEE Trans Biomed Eng; 2024 Aug; 71(8):2311-2320. PubMed ID: 38381630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds.
    Zhang Q; Fragnito N; Franz JR; Sharma N
    J Neuroeng Rehabil; 2022 Aug; 19(1):86. PubMed ID: 35945600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.