BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28700833)

  • 1. Diversity and arsenic-tolerance potential of bacterial communities from soil and sediments along a gold tailing contamination gradient.
    Guan X; Yan X; Li Y; Jiang B; Luo X; Chi X
    Can J Microbiol; 2017 Sep; 63(9):788-805. PubMed ID: 28700833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils.
    Cai L; Liu G; Rensing C; Wang G
    BMC Microbiol; 2009 Jan; 9():4. PubMed ID: 19128515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial communities in sediments of the shallow Lake Dongping in China.
    Song H; Li Z; Du B; Wang G; Ding Y
    J Appl Microbiol; 2012 Jan; 112(1):79-89. PubMed ID: 22044641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of environmental factors on bacterial community structure in petroleum contaminated soil of Karamay oil field].
    Liang J; Yang J; Yang Y; Chao Q; Yin Y; Zhao Y
    Wei Sheng Wu Xue Bao; 2016 Aug; 56(8):1301-13. PubMed ID: 29738200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity and community structure of culturable arsenic-resistant bacteria across a soil arsenic gradient at an abandoned tungsten-tin mining area.
    Valverde A; González-Tirante M; Medina-Sierra M; Santa-Regina I; García-Sánchez A; Igual JM
    Chemosphere; 2011 Sep; 85(1):129-34. PubMed ID: 21724233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils.
    Zhang SY; Xiao X; Chen SC; Zhu YG; Sun GX; Konstantinidis KT
    Appl Environ Microbiol; 2021 Sep; 87(20):e0138321. PubMed ID: 34378947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments.
    Luo W; D'Angelo EM; Coyne MS
    Chemosphere; 2008 Jan; 70(3):364-73. PubMed ID: 17870145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bacterial diversity in littoral wetland of Wuliangsuhai Lake].
    Du R; Li J; Zhao J
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1116-28. PubMed ID: 25803888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle.
    De Mandal S; Chatterjee R; Kumar NS
    BMC Microbiol; 2017 Apr; 17(1):90. PubMed ID: 28399822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage.
    Desoeuvre A; Casiot C; Héry M
    Microb Ecol; 2016 Apr; 71(3):672-85. PubMed ID: 26603631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiomes in agricultural and mining soils contaminated with arsenic in Guanajuato, Mexico.
    López-Pérez ME; Saldaña-Robles A; Zanor GA; Ibarra JE; Del Rincón-Castro MC
    Arch Microbiol; 2021 Mar; 203(2):499-511. PubMed ID: 32964256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand.
    Jareonmit P; Sajjaphan K; Sadowsky MJ
    J Microbiol Biotechnol; 2010 Jan; 20(1):169-78. PubMed ID: 20134249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?
    Wu F; Wang JT; Yang J; Li J; Zheng YM
    Environ Pollut; 2016 Jun; 213():949-956. PubMed ID: 27055093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 16S rRNA and As-Related Functional Diversity: Contrasting Fingerprints in Arsenic-Rich Sediments from an Acid Mine Drainage.
    Fahy A; Giloteaux L; Bertin P; Le Paslier D; Médigue C; Weissenbach J; Duran R; Lauga B
    Microb Ecol; 2015 Jul; 70(1):154-67. PubMed ID: 25592635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.
    Sheik CS; Mitchell TW; Rizvi FZ; Rehman Y; Faisal M; Hasnain S; McInerney MJ; Krumholz LR
    PLoS One; 2012; 7(6):e40059. PubMed ID: 22768219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial diversity and community structure in an antimony-rich tailings dump.
    Xiao E; Krumins V; Dong Y; Xiao T; Ning Z; Xiao Q; Sun W
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7751-63. PubMed ID: 27188777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine.
    Drewniak L; Maryan N; Lewandowski W; Kaczanowski S; Sklodowska A
    Environ Pollut; 2012 Mar; 162():190-201. PubMed ID: 22243864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal dynamics of total and free-living nitrogen-fixing bacterial community abundance and structure in soil with and without history of arsenic contamination during a rice growing season.
    Chakraborty A; Islam E
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4951-4962. PubMed ID: 29204941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of microbial taxonomic and functional shift pattern along contamination gradient.
    Ren Y; Niu J; Huang W; Peng D; Xiao Y; Zhang X; Liang Y; Liu X; Yin H
    BMC Microbiol; 2016 Jun; 16(1):110. PubMed ID: 27301322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.