These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 28701520)
1. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. Dussault AM; Dubé A; Jacques F; Grondin JP; Lafontaine DA RNA; 2017 Oct; 23(10):1539-1551. PubMed ID: 28701520 [TBL] [Abstract][Full Text] [Related]
2. Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Heppell B; Blouin S; Dussault AM; Mulhbacher J; Ennifar E; Penedo JC; Lafontaine DA Nat Chem Biol; 2011 Jun; 7(6):384-92. PubMed ID: 21532599 [TBL] [Abstract][Full Text] [Related]
3. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch. Boyapati VK; Huang W; Spedale J; Aboul-Ela F RNA; 2012 Jun; 18(6):1230-43. PubMed ID: 22543867 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure and ligand-induced folding of the SAM/SAH riboswitch. Huang L; Liao TW; Wang J; Ha T; Lilley DMJ Nucleic Acids Res; 2020 Jul; 48(13):7545-7556. PubMed ID: 32520325 [TBL] [Abstract][Full Text] [Related]
5. Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine. Huang W; Kim J; Jha S; Aboul-Ela F J Mol Biol; 2012 May; 418(5):331-49. PubMed ID: 22425639 [TBL] [Abstract][Full Text] [Related]
6. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning. Wostenberg C; Ceres P; Polaski JT; Batey RT J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759 [TBL] [Abstract][Full Text] [Related]
7. Conformational capture of the SAM-II riboswitch. Haller A; Rieder U; Aigner M; Blanchard SC; Micura R Nat Chem Biol; 2011 Jun; 7(6):393-400. PubMed ID: 21532598 [TBL] [Abstract][Full Text] [Related]
8. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706 [TBL] [Abstract][Full Text] [Related]
9. Folding of the SAM-I riboswitch: a tale with a twist. Eschbach SH; St-Pierre P; Penedo JC; Lafontaine DA RNA Biol; 2012 May; 9(5):535-41. PubMed ID: 22336759 [TBL] [Abstract][Full Text] [Related]
10. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms. Boudreault J; Perez-Gonzalez DC; Penedo JC; Lafontaine DA Methods Mol Biol; 2015; 1334():101-7. PubMed ID: 26404145 [TBL] [Abstract][Full Text] [Related]
11. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch. Suresh G; Srinivasan H; Nanda S; Priyakumar UD Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101 [TBL] [Abstract][Full Text] [Related]
12. Folding of the SAM aptamer is determined by the formation of a K-turn-dependent pseudoknot. Heppell B; Lafontaine DA Biochemistry; 2008 Feb; 47(6):1490-9. PubMed ID: 18205390 [TBL] [Abstract][Full Text] [Related]
13. Role of lysine binding residues in the global folding of the lysC riboswitch. Smith-Peter E; Lamontagne AM; Lafontaine DA RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229 [TBL] [Abstract][Full Text] [Related]
14. Riboswitch structure in the ligand-free state. Liberman JA; Wedekind JE Wiley Interdiscip Rev RNA; 2012; 3(3):369-84. PubMed ID: 21957061 [TBL] [Abstract][Full Text] [Related]
15. Structural studies of the purine and SAM binding riboswitches. Gilbert SD; Montange RK; Stoddard CD; Batey RT Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305 [TBL] [Abstract][Full Text] [Related]
16. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. Zheng L; Song Q; Xu X; Shen X; Li C; Li H; Chen H; Ren A Sci China Life Sci; 2023 Jan; 66(1):31-50. PubMed ID: 36459353 [TBL] [Abstract][Full Text] [Related]
17. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
18. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931 [TBL] [Abstract][Full Text] [Related]
19. Application of fluorescent measurements for characterization of riboswitch-ligand interactions. Heppell B; Mulhbacher J; Penedo JC; Lafontaine DA Methods Mol Biol; 2009; 540():25-37. PubMed ID: 19381550 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. Gilbert SD; Stoddard CD; Wise SJ; Batey RT J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]