BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28701521)

  • 21. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.
    Semotok JL; Cooperstock RL; Pinder BD; Vari HK; Lipshitz HD; Smibert CA
    Curr Biol; 2005 Feb; 15(4):284-94. PubMed ID: 15723788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila.
    Dahanukar A; Walker JA; Wharton RP
    Mol Cell; 1999 Aug; 4(2):209-18. PubMed ID: 10488336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition.
    Liu L; Qi H; Wang J; Lin H
    Development; 2011 May; 138(9):1863-73. PubMed ID: 21447556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The
    Kotov AA; Godneeva BK; Olenkina OM; Adashev VE; Trostnikov MV; Olenina LV
    Cells; 2020 Feb; 9(3):. PubMed ID: 32111103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(ADP-Ribosyl)ation of hnRNP A1 Protein Controls Translational Repression in Drosophila.
    Ji Y; Tulin AV
    Mol Cell Biol; 2016 Oct; 36(19):2476-86. PubMed ID: 27402862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smaug: an unexpected journey into the mechanisms of post-transcriptional regulation.
    Pinder BD; Smibert CA
    Fly (Austin); 2013; 7(3):142-5. PubMed ID: 23519205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterning of the Drosophila oocyte by a sequential translation repression program involving the d4EHP and Belle translational repressors.
    Yarunin A; Harris RE; Ashe MP; Ashe HL
    RNA Biol; 2011; 8(5):904-12. PubMed ID: 21788736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragile X mental retardation protein controls trailer hitch expression and cleavage furrow formation in Drosophila embryos.
    Monzo K; Papoulas O; Cantin GT; Wang Y; Yates JR; Sisson JC
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18160-5. PubMed ID: 17110444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz.
    Wilhelm JE; Hilton M; Amos Q; Henzel WJ
    J Cell Biol; 2003 Dec; 163(6):1197-204. PubMed ID: 14691132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis.
    Nakamura A; Sato K; Hanyu-Nakamura K
    Dev Cell; 2004 Jan; 6(1):69-78. PubMed ID: 14723848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A conserved 90 nucleotide element mediates translational repression of nanos RNA.
    Gavis ER; Lunsford L; Bergsten SE; Lehmann R
    Development; 1996 Sep; 122(9):2791-800. PubMed ID: 8787753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The translational repressor Cup is required for germ cell development in Drosophila.
    Ottone C; Gigliotti S; Giangrande A; Graziani F; Verrotti di Pianella A
    J Cell Sci; 2012 Jul; 125(Pt 13):3114-23. PubMed ID: 22454519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal complexity within a translational control element in the nanos mRNA.
    Forrest KM; Clark IE; Jain RA; Gavis ER
    Development; 2004 Dec; 131(23):5849-57. PubMed ID: 15525666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila.
    Wilhelm JE; Buszczak M; Sayles S
    Dev Cell; 2005 Nov; 9(5):675-85. PubMed ID: 16256742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maternal Nanos-Dependent RNA Stabilization in the Primordial Germ Cells of Drosophila Embryos.
    Sugimori S; Kumata Y; Kobayashi S
    Dev Growth Differ; 2018 Jan; 60(1):63-75. PubMed ID: 29278271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple mechanisms collaborate to repress nanos translation in the Drosophila ovary and embryo.
    Andrews S; Snowflack DR; Clark IE; Gavis ER
    RNA; 2011 May; 17(5):967-77. PubMed ID: 21460235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase.
    Tadros W; Goldman AL; Babak T; Menzies F; Vardy L; Orr-Weaver T; Hughes TR; Westwood JT; Smibert CA; Lipshitz HD
    Dev Cell; 2007 Jan; 12(1):143-55. PubMed ID: 17199047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drosophila maternal Hsp83 mRNA destabilization is directed by multiple SMAUG recognition elements in the open reading frame.
    Semotok JL; Luo H; Cooperstock RL; Karaiskakis A; Vari HK; Smibert CA; Lipshitz HD
    Mol Cell Biol; 2008 Nov; 28(22):6757-72. PubMed ID: 18794360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Proteomics Reveal Me31B's Interactome Dynamics, Expression Regulation, and Assembly Mechanism into Germ Granules during Drosophila Germline Development.
    McCambridge A; Solanki D; Olchawa N; Govani N; Trinidad JC; Gao M
    Sci Rep; 2020 Jan; 10(1):564. PubMed ID: 31953495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer.
    Minshall N; Standart N
    Nucleic Acids Res; 2004; 32(4):1325-34. PubMed ID: 14982957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.