These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28701550)
1. Influence of envelope waveform on ITD sensitivity of neurons in the auditory midbrain. Greenberg D; Monaghan JJM; Dietz M; Marquardt T; McAlpine D J Neurophysiol; 2017 Oct; 118(4):2358-2370. PubMed ID: 28701550 [TBL] [Abstract][Full Text] [Related]
2. The influence of the envelope waveform on binaural tuning of neurons in the inferior colliculus and its relation to binaural perception. Dietz M; Marquardt T; Greenberg D; McAlpine D Adv Exp Med Biol; 2013; 787():223-30. PubMed ID: 23716227 [TBL] [Abstract][Full Text] [Related]
3. Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds. Wang J; Qin L; Chimoto S; Tazunoki S; Sato Y Neuroscience; 2014 Jan; 256():309-21. PubMed ID: 24177068 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity to Interaural Time Differences Conveyed in the Stimulus Envelope: Estimating Inputs of Binaural Neurons Through the Temporal Analysis of Spike Trains. Dietz M; Wang L; Greenberg D; McAlpine D J Assoc Res Otolaryngol; 2016 Aug; 17(4):313-30. PubMed ID: 27294694 [TBL] [Abstract][Full Text] [Related]
5. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat. Lohuis TD; Fuzessery ZM Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183 [TBL] [Abstract][Full Text] [Related]
6. The influence of pause, attack, and decay duration of the ongoing envelope on sound lateralization. Dietz M; Klein-Hennig M; Hohmann V J Acoust Soc Am; 2015 Feb; 137(2):EL137-43. PubMed ID: 25698041 [TBL] [Abstract][Full Text] [Related]
7. Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study. Wang L; Devore S; Delgutte B; Colburn HS J Neurophysiol; 2014 Jan; 111(1):164-81. PubMed ID: 24155013 [TBL] [Abstract][Full Text] [Related]
8. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive. Joris PX J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590 [TBL] [Abstract][Full Text] [Related]
9. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners. Ross B Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860 [TBL] [Abstract][Full Text] [Related]
10. Neural sensitivity to interaural envelope delays in the inferior colliculus of the guinea pig. Griffin SJ; Bernstein LR; Ingham NJ; McAlpine D J Neurophysiol; 2005 Jun; 93(6):3463-78. PubMed ID: 15703234 [TBL] [Abstract][Full Text] [Related]
11. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. Joris PX; Yin TC J Neurophysiol; 1995 Mar; 73(3):1043-62. PubMed ID: 7608754 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors. Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195 [TBL] [Abstract][Full Text] [Related]
13. Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants in Unanesthetized Rabbits. Chung Y; Hancock KE; Delgutte B J Neurosci; 2016 May; 36(20):5520-31. PubMed ID: 27194332 [TBL] [Abstract][Full Text] [Related]
14. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location. Brown AD; Tollin DJ J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028 [TBL] [Abstract][Full Text] [Related]
15. Cortical Responses to the Amplitude Envelopes of Sounds Change with Age. Irsik VC; Almanaseer A; Johnsrude IS; Herrmann B J Neurosci; 2021 Jun; 41(23):5045-5055. PubMed ID: 33903222 [TBL] [Abstract][Full Text] [Related]
16. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils. Vollmer M J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238 [TBL] [Abstract][Full Text] [Related]
17. Comparing the effect of pause duration on threshold interaural time differences between exponential and squared-sine envelopes (L). Dietz M; Wendt T; Ewert SD; Laback B; Hohmann V J Acoust Soc Am; 2013 Jan; 133(1):1-4. PubMed ID: 23297875 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates. Monaghan JJ; Bleeck S; McAlpine D Trends Hear; 2015 Dec; 19():. PubMed ID: 26721926 [TBL] [Abstract][Full Text] [Related]
19. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences. Batra R; Kuwada S; Stanford TR J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589 [TBL] [Abstract][Full Text] [Related]
20. Human cortical sensitivity to interaural time difference in high-frequency sounds. Salminen NH; Altoè A; Takanen M; Santala O; Pulkki V Hear Res; 2015 May; 323():99-106. PubMed ID: 25668126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]