These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 28701708)

  • 21. Liquid gated ZnO nanorod FET sensor for ultrasensitive detection of Hepatitis B surface antigen with vertical electrode configuration.
    Chakraborty B; Ghosh S; Das N; RoyChaudhuri C
    Biosens Bioelectron; 2018 Dec; 122():58-67. PubMed ID: 30240967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Graphene and Aptamer Based Liquid Gated FET-Like Electrochemical Biosensor to Detect Adenosine Triphosphate.
    Mukherjee S; Meshik X; Choi M; Farid S; Datta D; Lan Y; Poduri S; Sarkar K; Baterdene U; Huang CE; Wang YY; Burke P; Dutta M; Stroscio MA
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):967-72. PubMed ID: 26595926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boronate probe-based hydrogen peroxide detection with AlGaN/GaN HEMT sensor.
    Mahaboob I; Reinertsen RJ; McEwen B; Hogan K; Rocco E; Melendez JA; Cady NC; Shahedipour-Sandvik F
    Exp Biol Med (Maywood); 2021 Mar; 246(5):523-528. PubMed ID: 33203229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying the effect of ionic screening with protein-decorated graphene transistors.
    Ping J; Xi J; Saven JG; Liu R; Johnson ATC
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):689-692. PubMed ID: 26626969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct attachment of DNA to semiconducting surfaces for biosensor applications.
    Fahrenkopf NM; Shahedipour-Sandvik F; Tokranova N; Bergkvist M; Cady NC
    J Biotechnol; 2010 Nov; 150(3):312-4. PubMed ID: 20869405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Current Collapse in AlGaN/GaN High-Electron Mobility Transistors Can Originate from the Energy Relaxation of Channel Electrons?
    Mao LF; Ning HS; Wang JY
    PLoS One; 2015; 10(6):e0128438. PubMed ID: 26039589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical Biosensing at Physiological Ionic Strength Using Graphene Field-Effect Transistor in Femtoliter Microdroplet.
    Ono T; Kanai Y; Inoue K; Watanabe Y; Nakakita SI; Kawahara T; Suzuki Y; Matsumoto K
    Nano Lett; 2019 Jun; 19(6):4004-4009. PubMed ID: 31141379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Divalent Cation Dependence Enhances Dopamine Aptamer Biosensing.
    Nakatsuka N; Abendroth JM; Yang KA; Andrews AM
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9425-9435. PubMed ID: 33410656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors.
    Lung Khung Y; Narducci D
    Biosens Bioelectron; 2013 Dec; 50():278-93. PubMed ID: 23872609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene-based liquid-gated field effect transistor for biosensing: Theory and experiments.
    Reiner-Rozman C; Larisika M; Nowak C; Knoll W
    Biosens Bioelectron; 2015 Aug; 70():21-7. PubMed ID: 25791463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements.
    Yu J; Jha SK; Xiao L; Liu Q; Wang P; Surya C; Yang M
    Biosens Bioelectron; 2007 Nov; 23(4):513-9. PubMed ID: 17766103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein.
    Rahim Ruslinda A; Tanabe K; Ibori S; Wang X; Kawarada H
    Biosens Bioelectron; 2013 Feb; 40(1):277-82. PubMed ID: 22975093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-free biosensors based on aptamer-modified graphene field-effect transistors.
    Ohno Y; Maehashi K; Matsumoto K
    J Am Chem Soc; 2010 Dec; 132(51):18012-3. PubMed ID: 21128665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices.
    Elnathan R; Kwiat M; Pevzner A; Engel Y; Burstein L; Khatchtourints A; Lichtenstein A; Kantaev R; Patolsky F
    Nano Lett; 2012 Oct; 12(10):5245-54. PubMed ID: 22963381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Miniaturized Biomedical Sensors for Enumeration of Extracellular Vesicles.
    Pulikkathodi AK; Sarangadharan I; Lo CY; Chen PH; Chen CC; Wang YL
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30060613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.
    Kulkarni GS; Zhong Z
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets.
    Chen Y; Ren R; Pu H; Chang J; Mao S; Chen J
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):505-510. PubMed ID: 27040183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors.
    Kim A; Ah CS; Park CW; Yang JH; Kim T; Ahn CG; Park SH; Sung GY
    Biosens Bioelectron; 2010 Mar; 25(7):1767-73. PubMed ID: 20093001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing.
    Nakatsuka N; Yang KA; Abendroth JM; Cheung KM; Xu X; Yang H; Zhao C; Zhu B; Rim YS; Yang Y; Weiss PS; Stojanović MN; Andrews AM
    Science; 2018 Oct; 362(6412):319-324. PubMed ID: 30190311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects.
    Vu CA; Chen WY
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.