These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 28701717)

  • 1. Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement.
    Qu S; Ma C; Liu H
    Sci Rep; 2017 Jul; 7(1):5190. PubMed ID: 28701717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid graphene plasmonic waveguide modulators.
    Ansell D; Radko IP; Han Z; Rodriguez FJ; Bozhevolnyi SI; Grigorenko AN
    Nat Commun; 2015 Nov; 6():8846. PubMed ID: 26554944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-layer graphene optical modulator based on arrayed hybrid plasmonic nanowires.
    Li Z; Huang J; Zhao Z; Wang Y; Huang C; Zhang Y
    Opt Express; 2021 Sep; 29(19):30104-30113. PubMed ID: 34614740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas.
    Yu R; Pruneri V; García de Abajo FJ
    Sci Rep; 2016 Aug; 6():32144. PubMed ID: 27561789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides.
    Ding Y; Guan X; Zhu X; Hu H; Bozhevolnyi SI; Oxenløwe LK; Jin KJ; Mortensen NA; Xiao S
    Nanoscale; 2017 Oct; 9(40):15576-15581. PubMed ID: 28984878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band.
    Cai M; Wang S; Liu Z; Wang Y; Han T; Liu H
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications.
    Ye L; Sui K; Zhang Y; Liu QH
    Nanoscale; 2019 Feb; 11(7):3229-3239. PubMed ID: 30706929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of a graphene-based hybrid plasmonic modulator.
    Hao R; Jiao J; Peng X; Zhen Z; Dagarbek R; Zou Y; Li E
    Opt Lett; 2019 May; 44(10):2586-2589. PubMed ID: 31090738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a graphene-based dual-slot hybrid plasmonic electro-absorption modulator with high-modulation efficiency and broad optical bandwidth for on-chip communication.
    Wu Z; Xu Y
    Appl Opt; 2018 Apr; 57(12):3260-3267. PubMed ID: 29714316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon.
    Kim Y; Kwon MS
    Nanoscale; 2017 Nov; 9(44):17429-17438. PubMed ID: 29104985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate.
    Zheng J; Yu L; He S; Dai D
    Sci Rep; 2015 Jan; 5():7987. PubMed ID: 25614327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid phonon-polaritons at atomically-thin van der Waals heterointerfaces for infrared optical modulation.
    Zhang Q; Zhen Z; Yang Y; Gan G; Jariwala D; Cui X
    Opt Express; 2019 Jun; 27(13):18585-18600. PubMed ID: 31252799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing modulation performance by design of hybrid plasmonic optical modulator integrating multi-layer graphene and TiO
    Supasai W; Siritaratiwat A; Srichan C; Suwanarat S; Amorntep N; Wannaprapa M; Jutong N; Chaisakul P; Wiangwiset T; Narkglom S; Keokhoungning T; Surawanitkun C
    Nanotechnology; 2024 May; 35(31):. PubMed ID: 38758958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-energy high-speed plasmonic enhanced modulator using graphene.
    Huang B; Lu W; Liu Z; Gao S
    Opt Express; 2018 Mar; 26(6):7358-7367. PubMed ID: 29609292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide wavelength tuning of optical antennas on graphene with nanosecond response time.
    Yao Y; Kats MA; Shankar R; Song Y; Kong J; Loncar M; Capasso F
    Nano Lett; 2014 Jan; 14(1):214-9. PubMed ID: 24299012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance tunable resonant electro-optical modulator based on suspended graphene waveguides.
    Rezaei MH; Shiri M
    Opt Express; 2021 May; 29(11):16299-16311. PubMed ID: 34154196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based hybrid films for plasmonic sensing.
    Zhao Y; Zhu Y
    Nanoscale; 2015 Sep; 7(35):14561-76. PubMed ID: 26282552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.
    Cai Y; Zhu J; Liu QH; Lin T; Zhou J; Ye L; Cai Z
    Opt Express; 2015 Dec; 23(25):32318-28. PubMed ID: 26699022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultracompact electro-optic waveguide modulator based on a graphene-covered λ/1000 plasmonic nanogap.
    Kim S; Menabde SG; Cox JD; Low T; Jang MS
    Opt Express; 2021 Apr; 29(9):13852-13863. PubMed ID: 33985113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.