These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28701717)

  • 21. Ultracompact Graphene-Assisted Tunable Waveguide Couplers with High Directivity and Mode Selectivity.
    Meng Y; Hu F; Shen Y; Yang Y; Xiao Q; Fu X; Gong M
    Sci Rep; 2018 Sep; 8(1):13362. PubMed ID: 30190496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-infrared electro-optic modulator based on plasmonic graphene.
    Das S; Salandrino A; Wu JZ; Hui R
    Opt Lett; 2015 Apr; 40(7):1516-9. PubMed ID: 25831373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow light enabled high-modulation-depth graphene modulator with plasmonic metasurfaces.
    Ren T; Chen L
    Opt Lett; 2019 Nov; 44(22):5446-5449. PubMed ID: 31730079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced tunable plasmonic resonance in crumpled graphene resonators loaded with gate tunable metamaterials.
    Khattak MI; Ullah Z; Al-Hasan M; Sheikh F
    Opt Express; 2020 Dec; 28(25):37860-37878. PubMed ID: 33379612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In-plane electric field confinement engineering in graphene-based hybrid plasmonic waveguides.
    Wang B; Blaize S; Kim S; Yang H; Salas-Montiel R
    Appl Opt; 2019 Sep; 58(27):7503-7509. PubMed ID: 31674401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect.
    Peng X; Hao R; Ye Z; Qin P; Chen W; Chen H; Jin X; Yang D; Li E
    Opt Lett; 2017 May; 42(9):1736-1739. PubMed ID: 28454148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large modulation capacity in graphene-based slot modulators by enhanced hybrid plasmonic effects.
    Hao R; Ye Z; Gu Y; Peng X; Chen H; Li E
    Sci Rep; 2018 Nov; 8(1):16830. PubMed ID: 30443027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomechanical electro-optical modulator based on atomic heterostructures.
    Thomas PA; Marshall OP; Rodriguez FJ; Auton GH; Kravets VG; Kundys D; Su Y; Grigorenko AN
    Nat Commun; 2016 Nov; 7():13590. PubMed ID: 27874003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength.
    Kim M; Jeong CY; Heo H; Kim S
    Opt Lett; 2015 Mar; 40(6):871-4. PubMed ID: 25768134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical investigation of optical modulators based on graphene-coated side- polished fiber.
    Xiao Y; Zhang J; Yu J; Dong H; Wei Y; Luo Y; Zhong Y; Qiu W; Dong J; Lu H; Guan H; Tang J; Zhu W; Chen Z
    Opt Express; 2018 May; 26(11):13759-13772. PubMed ID: 29877424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active metasurface modulator with electro-optic polymer using bimodal plasmonic resonance.
    Zhang J; Kosugi Y; Otomo A; Nakano Y; Tanemura T
    Opt Express; 2017 Nov; 25(24):30304-30311. PubMed ID: 29221060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Broadband optical modulators based on graphene supercapacitors.
    Polat EO; Kocabas C
    Nano Lett; 2013; 13(12):5851-7. PubMed ID: 24215484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electro-Ionic Control of Surface Plasmons in Graphene-Layered Heterostructures.
    Pae JY; Medwal R; Nair RV; Chaurasiya A; Battiato M; Rawat RS; Matham MV
    Nano Lett; 2020 Nov; 20(11):8305-8311. PubMed ID: 33079550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronically Tunable Perfect Absorption in Graphene.
    Kim S; Jang MS; Brar VW; Mauser KW; Kim L; Atwater HA
    Nano Lett; 2018 Feb; 18(2):971-979. PubMed ID: 29320203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scalable graphene electro-optical modulators for all-fibre pulsed lasers.
    Lau KY; Pyymaki Perros A; Li D; Kim M; Sun Z
    Nanoscale; 2021 Jun; 13(21):9873-9880. PubMed ID: 34036962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides.
    Su Y; Lin Q; Zhai X; Wang LL
    Nanoscale Res Lett; 2018 Oct; 13(1):308. PubMed ID: 30284110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double-layer graphene for enhanced tunable infrared plasmonics.
    Rodrigo D; Tittl A; Limaj O; Abajo FJG; Pruneri V; Altug H
    Light Sci Appl; 2017 Jun; 6(6):e16277. PubMed ID: 30167262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low Insertion Loss Plasmon-Enhanced Graphene All-Optical Modulator.
    AlAloul M; Rasras M
    ACS Omega; 2021 Mar; 6(11):7576-7584. PubMed ID: 33778268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.