These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28701819)
1. Mercury bioaccumulation increases with latitude in a coastal marine fish (Atlantic silverside, Menidia menidia). Baumann Z; Mason RP; Conover DO; Balcom P; Chen CY; Buckman KL; Fisher NS; Baumann H Can J Fish Aquat Sci; 2017 Jul; 74(7):1009-1015. PubMed ID: 28701819 [TBL] [Abstract][Full Text] [Related]
2. Bioaccumulation of methylmercury in a marine copepod. Lee CS; Fisher NS Environ Toxicol Chem; 2017 May; 36(5):1287-1293. PubMed ID: 27764899 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of dietary methylmercury and effects on growth and survival in two estuarine forage fish: Cyprinodon variegatus and Menidia beryllina. Stefansson ES; Heyes A; Rowe CL Environ Toxicol Chem; 2013 Apr; 32(4):848-56. PubMed ID: 23341241 [TBL] [Abstract][Full Text] [Related]
4. Seasonal and annual trends in forage fish mercury concentrations, San Francisco Bay. Greenfield BK; Melwani AR; Allen RM; Slotton DG; Ayers SM; Harrold KH; Ridolfi K; Jahn A; Grenier JL; Sandheinrich MB Sci Total Environ; 2013 Feb; 444():591-601. PubMed ID: 23314313 [TBL] [Abstract][Full Text] [Related]
5. Environmental Origins of Methylmercury Accumulated in Subarctic Estuarine Fish Indicated by Mercury Stable Isotopes. Li M; Schartup AT; Valberg AP; Ewald JD; Krabbenhoft DP; Yin R; Balcom PH; Sunderland EM Environ Sci Technol; 2016 Nov; 50(21):11559-11568. PubMed ID: 27690400 [TBL] [Abstract][Full Text] [Related]
6. Ecological drivers of mercury concentrations in fish species in subsistence harvests from Kotzebue Sound, Alaska. Cyr AP; López JA; Wooller MJ; Whiting A; Gerlach R; O'Hara T Environ Res; 2019 Oct; 177():108622. PubMed ID: 31419713 [TBL] [Abstract][Full Text] [Related]
7. Regional differentiation and post-glacial expansion of the Atlantic silverside, Mach ME; Sbrocco EJ; Hice LA; Duffy TA; Conover DO; Barber PH Mar Biol; 2011; 158(3):515-530. PubMed ID: 24391257 [TBL] [Abstract][Full Text] [Related]
8. Mercury and selenium in tropical marine plankton and their trophic successors. Guedes Seixas T; Moreira I; Siciliano S; Malm O; Kehrig HA Chemosphere; 2014 Sep; 111():32-9. PubMed ID: 24997897 [TBL] [Abstract][Full Text] [Related]
9. Methylmercury bioaccumulation in an urban estuary: Delaware River USA. Buckman K; Taylor V; Broadley H; Hocking D; Balcom P; Mason R; Nislow K; Chen C Estuaries Coast; 2017 Sep; 40(5):1358-1370. PubMed ID: 28970741 [TBL] [Abstract][Full Text] [Related]
10. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish. Peng X; Liu F; Wang WX Environ Toxicol Chem; 2016 Aug; 35(8):2074-83. PubMed ID: 26756981 [TBL] [Abstract][Full Text] [Related]
11. Total mercury, methylmercury, and selenium in aquatic products from coastal cities of China: Distribution characteristics and risk assessment. Zhang H; Guo C; Feng H; Shen Y; Wang Y; Zeng T; Song S Sci Total Environ; 2020 Oct; 739():140034. PubMed ID: 32758950 [TBL] [Abstract][Full Text] [Related]
12. Pattern and scale of geographic variation in environmental sex determination in the Atlantic silverside, Menidia menidia. Duffy TA; Hice LA; Conover DO Evolution; 2015 Aug; 69(8):2187-95. PubMed ID: 26177746 [TBL] [Abstract][Full Text] [Related]
13. Contrasting mercury accumulation patterns in tilapia (Oreochromis niloticus) and implications on somatic growth dilution. Wang R; Wang WX Aquat Toxicol; 2012 Jun; 114-115():23-30. PubMed ID: 22417761 [TBL] [Abstract][Full Text] [Related]
14. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations. Tong Y; Wang M; Bu X; Guo X; Lin Y; Lin H; Li J; Zhang W; Wang X Environ Pollut; 2017 Dec; 231(Pt 1):396-405. PubMed ID: 28818815 [TBL] [Abstract][Full Text] [Related]
15. Wetland Management Strategy to Reduce Mercury in Water and Bioaccumulation in Fish. Ackerman JT; Fleck JA; Eagles-Smith CA; Marvin-DiPasquale M; Windham-Myers L; Herzog MP; McQuillen HL Environ Toxicol Chem; 2019 Oct; 38(10):2178-2196. PubMed ID: 31343757 [TBL] [Abstract][Full Text] [Related]
16. Diet-specific trophic transfer of mercury in tilapia (Oreochromis niloticus): Biodynamic perspective. Wang R; Wang WX Environ Pollut; 2018 Mar; 234():288-296. PubMed ID: 29182973 [TBL] [Abstract][Full Text] [Related]
17. Mercury in San Francisco Bay forage fish. Greenfield BK; Jahn A Environ Pollut; 2010 Aug; 158(8):2716-24. PubMed ID: 20537451 [TBL] [Abstract][Full Text] [Related]
18. Coevolution of foraging behavior with intrinsic growth rate: risk-taking in naturally and artificially selected growth genotypes of Menidia menidia. Chiba S; Arnott SA; Conover DO Oecologia; 2007 Nov; 154(1):237-46. PubMed ID: 17701221 [TBL] [Abstract][Full Text] [Related]
19. Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio). Amlund H; Lundebye AK; Boyle D; Ellingsen S Aquat Toxicol; 2015 Jan; 158():211-7. PubMed ID: 25481787 [TBL] [Abstract][Full Text] [Related]
20. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Eagles-Smith CA; Wiener JG; Eckley CS; Willacker JJ; Evers DC; Marvin-DiPasquale M; Obrist D; Fleck JA; Aiken GR; Lepak JM; Jackson AK; Webster JP; Stewart AR; Davis JA; Alpers CN; Ackerman JT Sci Total Environ; 2016 Oct; 568():1213-1226. PubMed ID: 27320732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]