BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28702047)

  • 1. Transcriptome Analysis of Al-Induced Genes in Buckwheat (
    Xu JM; Fan W; Jin JF; Lou HQ; Chen WW; Yang JL; Zheng SJ
    Front Plant Sci; 2017; 8():1141. PubMed ID: 28702047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Transcriptome Analysis Reveals Conserved and Distinct Molecular Mechanisms of Al Resistance in Buckwheat (Fagopyrum esculentum Moench) Leaves.
    Chen WW; Xu JM; Jin JF; Lou HQ; Fan W; Yang JL
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28846612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench).
    Yokosho K; Yamaji N; Ma JF
    Plant Cell Physiol; 2014 Dec; 55(12):2077-91. PubMed ID: 25273892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum).
    Zhu H; Wang H; Zhu Y; Zou J; Zhao FJ; Huang CF
    BMC Plant Biol; 2015 Jan; 15():16. PubMed ID: 25603892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial characteristics of aluminum uptake and translocation in roots of buckwheat (Fagopyrum esculentum).
    Klug B; Horst WJ
    Physiol Plant; 2010 Jun; 139(2):181-91. PubMed ID: 20088907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots.
    Yang JL; Zheng SJ; He YF; You JF; Zhang L; Yu XH
    Plant Cell Environ; 2006 Feb; 29(2):240-6. PubMed ID: 17080639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Aluminum-Inducible IREG Gene is Required for Internal Detoxification of Aluminum in Buckwheat.
    Yokosho K; Yamaji N; Mitani-Ueno N; Shen RF; Ma JF
    Plant Cell Physiol; 2016 Jun; 57(6):1169-78. PubMed ID: 27053033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two MATE Transporters with Different Subcellular Localization are Involved in Al Tolerance in Buckwheat.
    Lei GJ; Yokosho K; Yamaji N; Ma JF
    Plant Cell Physiol; 2017 Dec; 58(12):2179-2189. PubMed ID: 29040793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat.
    Zheng SJ; Yang JL; He YF; Yu XH; Zhang L; You JF; Shen RF; Matsumoto H
    Plant Physiol; 2005 May; 138(1):297-303. PubMed ID: 15863697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic Revelation of Phenolic Compounds Involved in Aluminum Toxicity Responses in Roots of Cunninghamia lanceolata (Lamb.) Hook.
    Ma Z; Lin S
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31652726
    [No Abstract]   [Full Text] [Related]  

  • 11. Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat.
    Wang H; Chen RF; Iwashita T; Shen RF; Ma JF
    New Phytol; 2015 Jan; 205(1):273-9. PubMed ID: 25195800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench).
    Klug B; Specht A; Horst WJ
    J Exp Bot; 2011 Nov; 62(15):5453-62. PubMed ID: 21831842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotypic differences in Al resistance and the role of cell-wall pectin in Al exclusion from the root apex in Fagopyrum tataricum.
    Yang JL; Zhu XF; Zheng C; Zhang YJ; Zheng SJ
    Ann Bot; 2011 Mar; 107(3):371-8. PubMed ID: 21183454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat.
    Lei GJ; Yokosho K; Yamaji N; Fujii-Kashino M; Ma JF
    New Phytol; 2017 Aug; 215(3):1080-1089. PubMed ID: 28620956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome Analysis Reveals Key Seed-Development Genes in Common Buckwheat (
    Li H; Lv Q; Deng J; Huang J; Cai F; Liang C; Chen Q; Wang Y; Zhu L; Zhang X; Chen Q
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Genes Encoding a Bacterial-Type ATP-Binding Cassette Transporter are Implicated in Aluminum Tolerance in Buckwheat.
    Che J; Yamaji N; Yokosho K; Shen RF; Ma JF
    Plant Cell Physiol; 2018 Dec; 59(12):2502-2511. PubMed ID: 30124933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Analysis Reveals the Accumulation Mechanism of Anthocyanins in Buckwheat (
    Fang Z; Hou Z; Wang S; Liu Z; Wei S; Zhang Y; Song J; Yin J
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30934615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxalate exudation into the root-tip water free space confers protection from aluminum toxicity and allows aluminum accumulation in the symplast in buckwheat (Fagopyrum esculentum).
    Klug B; Horst WJ
    New Phytol; 2010 Jul; 187(2):380-391. PubMed ID: 20487309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome profiling of Fagopyrum tataricum leaves in response to lead stress.
    Wang L; Zheng B; Yuan Y; Xu Q; Chen P
    BMC Plant Biol; 2020 Feb; 20(1):54. PubMed ID: 32013882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome and genome analysis unravels the response of Tatary buckwheat root to nitrogen deficiency.
    Liu C; Qiu Q; Zou B; Wu Q; Ye X; Wan Y; Huang J; Wu X; Sun Y; Yan H; Fan Y; Jiang L; Zheng X; Zhao G; Zou L; Xiang D
    Plant Physiol Biochem; 2023 Mar; 196():647-660. PubMed ID: 36796235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.