BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28702082)

  • 1. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
    Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH
    Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
    Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ
    Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.
    Müller G; Chylenski P; Bissaro B; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2018; 11():209. PubMed ID: 30061931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass.
    Chylenski P; Forsberg Z; Ståhlberg J; Várnai A; Lersch M; Bengtsson O; Sæbø S; Horn SJ; Eijsink VGH
    J Biotechnol; 2017 Mar; 246():16-23. PubMed ID: 28219736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.
    Müller G; Kalyani DC; Horn SJ
    Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose.
    Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G
    Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials.
    Costa THF; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2019; 12():270. PubMed ID: 31788026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H
    Hansen LD; Eijsink VGH; Horn SJ; Várnai A
    Biotechnol Bioeng; 2023 Mar; 120(3):726-736. PubMed ID: 36471631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation.
    Zhang R; Liu Y; Zhang Y; Feng D; Hou S; Guo W; Niu K; Jiang Y; Han L; Sindhu L; Fang X
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5739-5750. PubMed ID: 31152202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses.
    Wang Z; Lan T; Zhu J
    Biotechnol Biofuels; 2013 Jan; 6(1):9. PubMed ID: 23356796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast
    Ladevèze S; Haon M; Villares A; Cathala B; Grisel S; Herpoël-Gimbert I; Henrissat B; Berrin JG
    Biotechnol Biofuels; 2017; 10():215. PubMed ID: 28919928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent.
    Tokin R; Ipsen JØ; Westh P; Johansen KS
    Biotechnol Lett; 2020 Oct; 42(10):1975-1984. PubMed ID: 32458293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis.
    de Gouvêa PF; Gerolamo LE; Bernardi AV; Pereira LMS; Uyemura SA; Dinamarco TM
    Protein Pept Lett; 2019; 26(5):377-385. PubMed ID: 31237199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification.
    Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H
    Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LPMO-supported saccharification of biomass: effects of continuous aeration of reaction mixtures with variable fractions of water-insoluble solids and cellulolytic enzymes.
    Tang C; Gandla ML; Jönsson LJ
    Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):156. PubMed ID: 37865768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.