These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28702513)

  • 1. An Auditory Nerve Stimulation Chip with Integrated AFE, Sound Processing, and Power Management for Fully Implantable Cochlear Implants.
    Anabtawi N; Freeman S; Ferzli R
    IEEE EMBS Int Conf Biomed Health Inform; 2016 Feb; 2016():616-619. PubMed ID: 28702513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor.
    Anabtawi N; Freeman S; Ferzli R
    IEEE EMBS Int Conf Biomed Health Inform; 2016 Feb; 2016():612-615. PubMed ID: 28702512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.
    Yip M; Jin R; Nakajima HH; Stankovic KM; Chandrakasan AP
    IEEE J Solid-State Circuits; 2015 Jan; 50(1):214-229. PubMed ID: 26251552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.
    Wang CP; Lee SY; Lai WC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5489-92. PubMed ID: 24110979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultra-low-power programmable analog bionic ear processor.
    Sarpeshkar R; Salthouse C; Sit JJ; Baker MW; Zhak SM; Lu TK; Turicchia L; Balster S
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):711-27. PubMed ID: 15825873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable Sensor Analog Front-End Using Low-Noise Chopper-Stabilized Delta-Sigma Capacitance-to-Digital Converter.
    Kim H; Lee B; Mun Y; Kim J; Han K; Roh Y; Song D; Huh S; Ko H
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
    Lee SB; Lee B; Kiani M; Mahmoudi B; Gross R; Ghovanloo M
    IEEE Sens J; 2016 Jan; 16(2):475-484. PubMed ID: 27069422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single Switcher Combined Series Parallel Hybrid Envelope Tracking Amplifier for Wideband RF Power Amplifier Applications.
    Anabtawi N; Ferzli R; Harmanani HM
    IEEE Int Symp Circuits Syst Proc; 2016 May; 2016():2366-2369. PubMed ID: 28919658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-mode CMOS analog front-end (AFE) for electrical impedance spectroscopy (EIS) systems.
    Valente V; Dai Jiang ; Demosthenous A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1914-1917. PubMed ID: 28268701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Digital Speech Processor for Cochlear Implants Using a TMS320C25.
    Dillier N; Senn C; Schlatter T; Stöckli M; Utzinger U
    Acta Otolaryngol; 1990; 109(sup469):120-127. PubMed ID: 31905530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultra low-power front-end IC for wearable health monitoring system.
    Yu-Pin Hsu ; Zemin Liu ; Hella MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1906-1909. PubMed ID: 28268699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and In Vivo Verification of a CMOS Bone-Guided Cochlear Implant Microsystem.
    Qian XH; Wu YC; Yang TY; Cheng CH; Chu HC; Cheng WH; Yen TY; Lin TH; Lin YJ; Lee YC; Chang JH; Lin ST; Li SH; Wu TC; Huang CC; Wang SH; Lee CF; Yang CH; Hung CC; Chi TS; Liu CH; Ker MD; Wu CY
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3156-3167. PubMed ID: 30802846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A full-custom fully implantable cochlear implant system validated in vivo with an animal model.
    Uluşan H; Yüksel MB; Topçu Ö; Yiğit HA; Yılmaz AM; Doğan M; Gülhan Yasar N; Kuyumcu İ; Batu A; Göksu N; Uğur MB; Külah H
    Commun Eng; 2024 Sep; 3(1):132. PubMed ID: 39277675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 11 mW 2.4 GHz 0.18 µm CMOS Transceivers for Wireless Sensor Networks.
    Hou B; Chen H; Wang Z; Mo J; Chen J; Yu F; Wang W
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28125033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-Wire Interface ASIC for a Multi-Implant Link.
    Ghoreishizadeh SS; Haci D; Liu Y; Donaldson N; Constandinou TG
    IEEE Trans Circuits Syst I Regul Pap; 2017 Dec; 64(12):3056-3067. PubMed ID: 30450492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Design of Analog Front-End with DBPSK Demodulator for Magnetic Field Wireless Network Sensors.
    Asl SAH; Rikan BS; Hejazi A; Pu Y; Huh H; Jung Y; Hwang KC; Yang Y; Lee KY
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual slope charge sampling analog front-end for a wireless neural recording system.
    Lee SB; Lee B; Gosselin B; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3134-7. PubMed ID: 25570655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wirelessly programmable chip for multi-channel neural stimulation.
    Mai S; Wang Z; Zhang C; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6595-9. PubMed ID: 23367441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable digital speech processor for cochlear implants using a TMS320C25.
    Dillier N; Senn C; Schlatter T; Stöckli M; Utzinger U
    Acta Otolaryngol Suppl; 1990; 469():120-7. PubMed ID: 2356719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.