These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28702561)

  • 1. Vibronic coupling in organic semiconductors for photovoltaics.
    De Sio A; Lienau C
    Phys Chem Chem Phys; 2017 Jul; 19(29):18813-18830. PubMed ID: 28702561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent Real-Space Charge Transport Across a Donor-Acceptor Interface Mediated by Vibronic Couplings.
    Xu Z; Zhou Y; Groß L; De Sio A; Yam CY; Lienau C; Frauenheim T; Chen G
    Nano Lett; 2019 Dec; 19(12):8630-8637. PubMed ID: 31698905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
    Gessner O; Gühr M
    Acc Chem Res; 2016 Jan; 49(1):138-45. PubMed ID: 26641490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent ultrafast charge transfer in an organic photovoltaic blend.
    Falke SM; Rozzi CA; Brida D; Maiuri M; Amato M; Sommer E; De Sio A; Rubio A; Cerullo G; Molinari E; Lienau C
    Science; 2014 May; 344(6187):1001-5. PubMed ID: 24876491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Long-Range Charge Separation in Organic Photovoltaics: Promotion by Off-Diagonal Vibronic Couplings and Entropy Increase.
    Yao Y; Xie X; Ma H
    J Phys Chem Lett; 2016 Dec; 7(23):4830-4835. PubMed ID: 27934051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes.
    Bian Q; Ma F; Chen S; Wei Q; Su X; Buyanova IA; Chen WM; Ponseca CS; Linares M; Karki KJ; Yartsev A; Inganäs O
    Nat Commun; 2020 Jan; 11(1):617. PubMed ID: 32001688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trap-Door-Like Irreversible Photoinduced Charge Transfer in a Donor-Acceptor Complex.
    Medrano CR; Sánchez CG
    J Phys Chem Lett; 2018 Jun; 9(12):3517-3524. PubMed ID: 29888923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.
    Delor M; Sazanovich IV; Towrie M; Weinstein JA
    Acc Chem Res; 2015 Apr; 48(4):1131-9. PubMed ID: 25789559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiophene-Fullerene Heterojunctions.
    Huix-Rotllant M; Tamura H; Burghardt I
    J Phys Chem Lett; 2015 May; 6(9):1702-8. PubMed ID: 26263337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Charge Transfer and Relaxation at a Donor-Acceptor Interface.
    Díaz FR; Duan HG; Miller RJD; Thorwart M
    J Phys Chem B; 2021 Aug; 125(31):8869-8875. PubMed ID: 34319718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P
    Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge transport in organic semiconductors.
    Bässler H; Köhler A
    Top Curr Chem; 2012; 312():1-65. PubMed ID: 21972021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.
    Santos EJ; Wang WL
    Nanoscale; 2016 Sep; 8(35):15902-10. PubMed ID: 27314747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation.
    Tamura H; Burghardt I
    J Am Chem Soc; 2013 Nov; 135(44):16364-7. PubMed ID: 24138412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking the coherent generation of polaron pairs in conjugated polymers.
    De Sio A; Troiani F; Maiuri M; Réhault J; Sommer E; Lim J; Huelga SF; Plenio MB; Rozzi CA; Cerullo G; Molinari E; Lienau C
    Nat Commun; 2016 Dec; 7():13742. PubMed ID: 27929115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of the charge generation in organic donor-acceptor interfaces.
    Andermann AM; Rego LGC
    J Chem Phys; 2022 Jan; 156(2):024104. PubMed ID: 35032994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system.
    Rozzi CA; Falke SM; Spallanzani N; Rubio A; Molinari E; Brida D; Maiuri M; Cerullo G; Schramm H; Christoffers J; Lienau C
    Nat Commun; 2013; 4():1602. PubMed ID: 23511467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.