BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28702573)

  • 1. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.
    Jeong HH; Yadavali S; Issadore D; Lee D
    Lab Chip; 2017 Jul; 17(15):2667-2673. PubMed ID: 28702573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions.
    Jeong HH; Chen Z; Yadavali S; Xu J; Issadore D; Lee D
    Lab Chip; 2019 Feb; 19(4):665-673. PubMed ID: 30657155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries.
    Hashimoto M; Shevkoplyas SS; Zasońska B; Szymborski T; Garstecki P; Whitesides GM
    Small; 2008 Oct; 4(10):1795-805. PubMed ID: 18819139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels.
    Chung CHY; Cui B; Song R; Liu X; Xu X; Yao S
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31509956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED).
    Jeong HH; Yelleswarapu VR; Yadavali S; Issadore D; Lee D
    Lab Chip; 2015 Dec; 15(23):4387-92. PubMed ID: 26428950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
    Peyman SA; Abou-Saleh RH; McLaughlan JR; Ingram N; Johnson BR; Critchley K; Freear S; Evans JA; Markham AF; Coletta PL; Evans SD
    Lab Chip; 2012 Nov; 12(21):4544-52. PubMed ID: 22968592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbubble generation in a co-flow device operated in a new regime.
    Castro-Hernández E; van Hoeve W; Lohse D; Gordillo JM
    Lab Chip; 2011 Jun; 11(12):2023-9. PubMed ID: 21431188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices.
    Lochovsky C; Yasotharan S; Günther A
    Lab Chip; 2012 Feb; 12(3):595-601. PubMed ID: 22159026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bubble dispenser in microfluidic devices.
    Cubaud T; Tatineni M; Zhong X; Ho CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037302. PubMed ID: 16241625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropumping of liquid by directional growth and selective venting of gas bubbles.
    Meng DD; Kim CJ
    Lab Chip; 2008 Jun; 8(6):958-68. PubMed ID: 18497918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of bubbles in a multisection flow-focusing junction.
    Hashimoto M; Whitesides GM
    Small; 2010 May; 6(9):1051-9. PubMed ID: 20411572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets.
    Seo M; Williams R; Matsuura N
    Lab Chip; 2015 Sep; 15(17):3581-90. PubMed ID: 26220563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse gas-filled microparticles from reactions in double emulsions.
    Duncanson WJ; Abbaspourrad A; Shum HC; Kim SH; Adams LL; Weitz DA
    Langmuir; 2012 May; 28(17):6742-5. PubMed ID: 22509783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coated gas bubbles for the continuous synthesis of hollow inorganic particles.
    Wan J; Stone HA
    Langmuir; 2012 Jan; 28(1):37-41. PubMed ID: 22129137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.