These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28702591)

  • 1. Investigation of the effects of phase transformations in micro and nano aluminum powders on kinetics of oxidation using thermogravimetric analysis.
    Saceleanu F; Atashin S; Wen JZ
    Phys Chem Chem Phys; 2017 Jul; 19(29):18996-19009. PubMed ID: 28702591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation and melting of aluminum nanopowders.
    Trunov MA; Umbrajkar SM; Schoenitz M; Mang JT; Dreizin EL
    J Phys Chem B; 2006 Jul; 110(26):13094-9. PubMed ID: 16805619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles.
    Wang H; Ren H; Yan T; Li Y; Zhao W
    Sci Rep; 2021 Jan; 11(1):738. PubMed ID: 33436998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry.
    Park K; Lee D; Rai A; Mukherjee D; Zachariah MR
    J Phys Chem B; 2005 Apr; 109(15):7290-9. PubMed ID: 16851834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation Mechanism of Core-Shell Structured Al@PVDF Powders Synthesized by Solvent/Non-Solvent Method.
    Wang C; Qin M; Yi Z; Deng H; Wang J; Sun Y; Luo G; Shen Q
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step synthesis of core-shell (Ce0.7Zr0.3O2)(x)(Al2O3)(1-x) [(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP).
    Kim M; Laine RM
    J Am Chem Soc; 2009 Jul; 131(26):9220-9. PubMed ID: 19566096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers.
    Wang F; Wu Z; Shangguan X; Sun Y; Feng J; Li Z; Chen L; Zuo S; Zhuo R; Yan P
    Sci Rep; 2017 Jul; 7(1):5228. PubMed ID: 28701741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures.
    Liu X; Zhang Q
    J Hazard Mater; 2015 Dec; 299():603-17. PubMed ID: 26276701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation and ignition of aluminum nanomaterials.
    Noor F; Zhang H; Korakianitis T; Wen D
    Phys Chem Chem Phys; 2013 Dec; 15(46):20176-88. PubMed ID: 24162275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation Behaviors of Aluminum Nanopowders with Different Particle Sizes: A Real-Time Synchrotron X-ray Scattering Study.
    Liang NN; Park SH; Cho TS
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1784-1788. PubMed ID: 33404448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of aluminum particles in the presence of water.
    Schoenitz M; Chen CM; Dreizin EL
    J Phys Chem B; 2009 Apr; 113(15):5136-40. PubMed ID: 19309144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation investigation of nickel nanoparticles.
    Song P; Wen D; Guo ZX; Korakianitis T
    Phys Chem Chem Phys; 2008 Sep; 10(33):5057-65. PubMed ID: 18701953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.
    Li X; Wang C; Zeng Y; Li P; Xie T; Zhang Y
    J Hazard Mater; 2016 Nov; 317():563-569. PubMed ID: 27344257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-stressing micron-scale aluminum core-shell particles to improve reactivity.
    Levitas VI; McCollum J; Pantoya M
    Sci Rep; 2015 Jan; 5():7879. PubMed ID: 25597747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Reactivity of Perfluoropolyether-Functionalized Aluminum Nanoparticles by the Reaction Interface Fuel-Oxidizer Ratio.
    Wu C; Nie J; Li S; Wang W; Pan Q; Guo X
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the oxidation of aluminum nanoparticles.
    Alavi S; Mintmire JW; Thompson DL
    J Phys Chem B; 2005 Jan; 109(1):209-14. PubMed ID: 16851006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation.
    Zhao B; Sun S; Luo Y; Cheng Y
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Characterization of Al/HTPB Composite for High Energetic Materials.
    Vorozhtsov A; Lerner M; Rodkevich N; Sokolov S; Perchatkina E; Paravan C
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33171684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.