BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28702592)

  • 1. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view.
    Katyal N; Deep S
    Phys Chem Chem Phys; 2017 Jul; 19(29):19120-19138. PubMed ID: 28702592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of water in protein aggregation and amyloid polymorphism.
    Thirumalai D; Reddy G; Straub JE
    Acc Chem Res; 2012 Jan; 45(1):83-92. PubMed ID: 21761818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Barriers in the Aggregation of a Hexadecameric Human Prion Peptide through the Markov State Model.
    Das BK; Singh O; Chakraborty D
    ACS Chem Neurosci; 2023 Oct; 14(19):3622-3645. PubMed ID: 37705330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations on the oligomer-formation process of the GNNQQNY peptide from yeast prion protein Sup35.
    Zhang Z; Chen H; Bai H; Lai L
    Biophys J; 2007 Sep; 93(5):1484-92. PubMed ID: 17483185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of sequence, topology and termini charge in determining the stability of the aggregates of GNNQQNY mutants: a molecular dynamics study.
    Srivastava A; Balaji PV
    PLoS One; 2014; 9(5):e96660. PubMed ID: 24817093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.
    Gill AC
    PLoS One; 2014; 9(1):e87354. PubMed ID: 24498083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insight into the inhibition effect of trehalose on the nucleation and elongation of amyloid beta-peptide oligomers.
    Liu FF; Ji L; Dong XY; Sun Y
    J Phys Chem B; 2009 Aug; 113(32):11320-9. PubMed ID: 19719268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular events during the early stages of aggregation of GNNQQNY: An all atom MD simulation study of randomly dispersed peptides.
    Srivastava A; Balaji PV
    J Struct Biol; 2015 Dec; 192(3):376-391. PubMed ID: 26433030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer.
    Berhanu WM; Masunov AE
    Biophys Chem; 2010 Jun; 149(1-2):12-21. PubMed ID: 20456856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors.
    Berhanu WM; Masunov AE
    J Biomol Struct Dyn; 2014; 32(10):1651-69. PubMed ID: 24028418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21459-64. PubMed ID: 21098298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic analysis of structural transitions during GNNQQNY aggregation.
    Osborne KL; Bachmann M; Strodel B
    Proteins; 2013 Jul; 81(7):1141-55. PubMed ID: 23408546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insights into the role of aqueous trehalose solution on temperature-induced protein denaturation.
    Paul S; Paul S
    J Phys Chem B; 2015 Jan; 119(4):1598-610. PubMed ID: 25558880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein.
    Satheeshkumar KS; Jayakumar R
    Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the mechanism of interaction between trehalose-conjugated beta-sheet breaker peptides and Aβ(1-42) fibrils by molecular dynamics simulations.
    Autiero I; Langella E; Saviano M
    Mol Biosyst; 2013 Nov; 9(11):2835-41. PubMed ID: 24056531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmolyte Induced Changes in Peptide Conformational Ensemble Correlate with Slower Amyloid Aggregation: A Coarse-Grained Simulation Study.
    Sukenik S; Sapir L; Harries D
    J Chem Theory Comput; 2015 Dec; 11(12):5918-28. PubMed ID: 26587669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational plasticity of the Gerstmann-Sträussler-Scheinker disease peptide as indicated by its multiple aggregation pathways.
    Natalello A; Prokorov VV; Tagliavini F; Morbin M; Forloni G; Beeg M; Manzoni C; Colombo L; Gobbi M; Salmona M; Doglia SM
    J Mol Biol; 2008 Sep; 381(5):1349-61. PubMed ID: 18619462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the role of hydration and confinement in the aggregation of amyloidogenic peptides Aβ(16-22) and Sup35(7-13) in AOT reverse micelles.
    Martinez AV; Małolepsza E; Rivera E; Lu Q; Straub JE
    J Chem Phys; 2014 Dec; 141(22):22D530. PubMed ID: 25494801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.