BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28702592)

  • 21. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Nasica-Labouze J; Meli M; Derreumaux P; Colombo G; Mousseau N
    PLoS Comput Biol; 2011 May; 7(5):e1002051. PubMed ID: 21625573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of electrostatics on aggregation of prion protein Sup35 peptide.
    Portillo AM; Krasnoslobodtsev AV; Lyubchenko YL
    J Phys Condens Matter; 2012 Apr; 24(16):164205. PubMed ID: 22466073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleation-dependent Aggregation Kinetics of Yeast Sup35 Fragment GNNQQNY.
    Burra G; Maina MB; Serpell LC; Thakur AK
    J Mol Biol; 2021 Feb; 433(3):166732. PubMed ID: 33279578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35.
    Gsponer J; Haberthür U; Caflisch A
    Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5154-9. PubMed ID: 12700355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clustering and Fibril Formation during GNNQQNY Aggregation: A Molecular Dynamics Study.
    Szała-Mendyk B; Molski A
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32987720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions.
    Jain S; Udgaonkar JB
    Biochemistry; 2011 Feb; 50(7):1153-61. PubMed ID: 21214263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing.
    Lipfert J; Franklin J; Wu F; Doniach S
    J Mol Biol; 2005 Jun; 349(3):648-58. PubMed ID: 15896350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amphiphilic Peptides A6K and V6K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study.
    Sun Y; Qian Z; Guo C; Wei G
    Biomacromolecules; 2015 Sep; 16(9):2940-9. PubMed ID: 26301845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the A117V mutation on the folding and aggregation of palindromic sequences (PrP113-120) in prion: insights from replica exchange molecular dynamics simulations.
    Ning L; Wang Q; Zheng Y; Liu H; Yao X
    Mol Biosyst; 2015 Feb; 11(2):647-55. PubMed ID: 25483828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: insights from all-atom simulations.
    Nam HB; Kouza M; Zung H; Li MS
    J Chem Phys; 2010 Apr; 132(16):165104. PubMed ID: 20441312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the Counteracting Effect of Trehalose on Urea-Induced Protein Denaturation Using Molecular Dynamics Simulation.
    Paul S; Paul S
    J Phys Chem B; 2015 Aug; 119(34):10975-88. PubMed ID: 26147245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of trehalose on the interaction of Alzheimer's Aβ-peptide and anionic lipid monolayers.
    Izmitli A; Schebor C; McGovern MP; Reddy AS; Abbott NL; de Pablo JJ
    Biochim Biophys Acta; 2011 Jan; 1808(1):26-33. PubMed ID: 20920466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Replica exchange molecular dynamics simulation of cross-fibrillation of IAPP and PrP106-126.
    Chua KP; Chew LY; Mu Y
    Proteins; 2016 Aug; 84(8):1134-46. PubMed ID: 27153477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prion-like Aggregation of the Heptapeptide GNNQQNY into Amyloid Nanofiber Is Governed by Configuration Entropy.
    Chen Z; Xiao X; Yang L; Lian C; Xu S; Liu H
    J Chem Inf Model; 2023 Oct; 63(20):6423-6435. PubMed ID: 37782627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico investigation and targeting of amyloid β oligomers of different size.
    Autiero I; Saviano M; Langella E
    Mol Biosyst; 2013 Aug; 9(8):2118-24. PubMed ID: 23708585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations.
    Wu C; Wang Z; Lei H; Zhang W; Duan Y
    J Am Chem Soc; 2007 Feb; 129(5):1225-32. PubMed ID: 17263405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Insights into the Dynamics of Amyloid Fibril Growth: Elongation and Lateral Assembly of GNNQQNY Protofibrils.
    John T; Rampioni A; Poger D; Mark AE
    ACS Chem Neurosci; 2024 Feb; 15(4):716-723. PubMed ID: 38235697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the conformational dynamics and pathways of spontaneous steric zipper Peptide oligomerization.
    Matthes D; Gapsys V; Daebel V; de Groot BL
    PLoS One; 2011 May; 6(5):e19129. PubMed ID: 21559277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanism for the effects of trehalose on beta-hairpin folding revealed by molecular dynamics simulation.
    Liu FF; Dong XY; Sun Y
    J Mol Graph Model; 2008 Nov; 27(4):421-9. PubMed ID: 18778961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.