These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28702614)

  • 1. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.
    Sinha S; Rahman RK; Raj A
    Phys Chem Chem Phys; 2017 Jul; 19(29):19262-19278. PubMed ID: 28702614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.
    Sinha S; Raj A
    Phys Chem Chem Phys; 2016 Mar; 18(11):8120-31. PubMed ID: 26923612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indene formation from alkylated aromatics: kinetics and products of the fulvenallene + acetylene reaction.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2009 Aug; 113(31):8971-8. PubMed ID: 19603772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAH growth initiated by propargyl addition: mechanism development and computational kinetics.
    Raj A; Al Rashidi MJ; Chung SH; Sarathy SM
    J Phys Chem A; 2014 Apr; 118(16):2865-85. PubMed ID: 24650362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.
    da Silva G; Bozzelli JW
    Phys Chem Chem Phys; 2012 Dec; 14(46):16143-54. PubMed ID: 23108328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ring-enlargement reactions in the formation of aromatic hydrocarbons.
    Baroncelli M; Mao Q; Galle S; Hansen N; Pitsch H
    Phys Chem Chem Phys; 2020 Feb; 22(8):4699-4714. PubMed ID: 32057058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for the growth of polycyclic aromatic hydrocarbons from the reactions of naphthalene with cyclopentadienyl and indenyl.
    Xu F; Shi X; Zhang Q; Wang W
    Chemosphere; 2016 Nov; 162():345-54. PubMed ID: 27538266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio G3-type/statistical theory study of the formation of indene in combustion flames. I. Pathways involving benzene and phenyl radical.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 May; 111(19):3922-31. PubMed ID: 17260977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growth mechanism of polycyclic aromatic hydrocarbons from the reactions of anthracene and phenanthrene with cyclopentadienyl and indenyl.
    Zhu L; Shi X; Sun Y; Zhang Q; Wang W
    Chemosphere; 2017 Dec; 189():265-276. PubMed ID: 28942252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Formation of Indene through the Reaction of Benzyl Radicals with Acetylene.
    Parker DS; Kaiser RI; Kostko O; Ahmed M
    Chemphyschem; 2015 Jul; 16(10):2091-3. PubMed ID: 25917234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames.
    Gleason K; Gomez A
    J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of o-benzyne with propargyl and benzyl radicals: potential sources of polycyclic aromatic hydrocarbons in combustion.
    Matsugi A; Miyoshi A
    Phys Chem Chem Phys; 2012 Jul; 14(27):9722-8. PubMed ID: 22678346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental study of indene pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry.
    Jin H; Yang J; Xing L; Hao J; Zhang Y; Cao C; Pan Y; Farooq A
    Phys Chem Chem Phys; 2019 Mar; 21(10):5510-5520. PubMed ID: 30785151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of the Indenyl Radical (C
    Zhao L; Prendergast MB; Kaiser RI; Xu B; Lu W; Ablikim U; Ahmed M; Oleinikov AD; Azyazov VN; Mebel AM; Howlader AH; Wnuk SF
    Chemphyschem; 2019 Jun; 20(11):1437-1447. PubMed ID: 30938059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.
    Ruwe L; Moshammer K; Hansen N; Kohse-Höinghaus K
    Phys Chem Chem Phys; 2018 Apr; 20(16):10780-10795. PubMed ID: 29392266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of PAH and soot precursors in benzene flames by addition of ethanol.
    Golea D; Rezgui Y; Guemini M; Hamdane S
    J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Butadiyne Addition to Propargyl: A Radical-Efficient Pathway for Polycyclic Aromatic Hydrocarbons.
    Jin H; Xing L; Yang J; Zhou Z; Qi F; Farooq A
    J Phys Chem Lett; 2021 Aug; 12(33):8109-8114. PubMed ID: 34410145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation pathways of polycyclic aromatic hydrocarbons (PAHs) in butane or butadiene flames.
    Zhang T; Mu G; Zhang S; Hou J
    RSC Adv; 2021 Jan; 11(10):5629-5642. PubMed ID: 35423086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol.
    Li Y; Yuan W; Li T; Li W; Yang J; Qi F
    Phys Chem Chem Phys; 2018 Apr; 20(16):10628-10636. PubMed ID: 29423471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of C5 into C6 cyclic species through the formation of C7 intermediates.
    Cavallotti C; Mancarella S; Rota R; Carrà S
    J Phys Chem A; 2007 May; 111(19):3959-69. PubMed ID: 17298043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.