These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28702795)
1. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72. Hu H; Li Y; Liu K; Zhao J; Wang W; Zhang X Appl Microbiol Biotechnol; 2017 Sep; 101(17):6607-6613. PubMed ID: 28702795 [TBL] [Abstract][Full Text] [Related]
2. Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid. Liu K; Li L; Yao W; Wang W; Huang Y; Wang R; Li P Sci Rep; 2021 Aug; 11(1):16451. PubMed ID: 34385485 [TBL] [Abstract][Full Text] [Related]
3. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Liu K; Hu H; Wang W; Zhang X Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of cinnabarinic acid by metabolically engineered Pseudomonas chlororaphis GP72. Yue SJ; Song C; Li S; Huang P; Guo SQ; Hu HB; Wang W; Zhang XH Biotechnol Bioeng; 2019 Nov; 116(11):3072-3083. PubMed ID: 31317529 [TBL] [Abstract][Full Text] [Related]
5. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production. Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439 [TBL] [Abstract][Full Text] [Related]
6. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Parsons JF; Song F; Parsons L; Calabrese K; Eisenstein E; Ladner JE Biochemistry; 2004 Oct; 43(39):12427-35. PubMed ID: 15449932 [TBL] [Abstract][Full Text] [Related]
7. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188 [TBL] [Abstract][Full Text] [Related]
8. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18. Wan Y; Liu H; Xian M; Huang W Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873 [TBL] [Abstract][Full Text] [Related]
10. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643 [TBL] [Abstract][Full Text] [Related]
11. Metabolic Engineering of Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542 [TBL] [Abstract][Full Text] [Related]
12. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3. Wang S; Fu C; Bilal M; Hu H; Wang W; Zhang X Microb Cell Fact; 2018 Nov; 17(1):174. PubMed ID: 30414616 [TBL] [Abstract][Full Text] [Related]
13. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Peng H; Zhang P; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jul; 17(1):117. PubMed ID: 30045743 [TBL] [Abstract][Full Text] [Related]
14. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409 [No Abstract] [Full Text] [Related]
15. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72. Li S; Yue SJ; Huang P; Feng TT; Zhang HY; Yao RL; Wang W; Zhang XH; Hu HB J Appl Microbiol; 2022 Nov; 133(5):2790-2801. PubMed ID: 35870153 [TBL] [Abstract][Full Text] [Related]
16. Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Huang L; Chen MM; Wang W; Hu HB; Peng HS; Xu YQ; Zhang XH Appl Microbiol Biotechnol; 2011 Jan; 89(1):169-77. PubMed ID: 20857290 [TBL] [Abstract][Full Text] [Related]
17. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66. Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Production of 2-Hydroxyphenazine from Glycerol by a Two-Stage Fermentation Strategy in Yue SJ; Huang P; Li S; Jan M; Hu HB; Wang W; Zhang XH J Agric Food Chem; 2020 Jan; 68(2):561-566. PubMed ID: 31840510 [TBL] [Abstract][Full Text] [Related]
19. Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66. Guo S; Wang Y; Wang W; Hu H; Zhang X Microb Cell Fact; 2020 May; 19(1):105. PubMed ID: 32430011 [TBL] [Abstract][Full Text] [Related]
20. Production of Antibacterial Questiomycin A in Metabolically Engineered Guo S; Hu H; Wang W; Bilal M; Zhang X J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224 [No Abstract] [Full Text] [Related] [Next] [New Search]