These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1044 related articles for article (PubMed ID: 28702892)
1. A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2 drugs in HER2-positive breast cancer cells. Chihara Y; Shimoda M; Hori A; Ohara A; Naoi Y; Ikeda JI; Kagara N; Tanei T; Shimomura A; Shimazu K; Kim SJ; Noguchi S Breast Cancer Res Treat; 2017 Nov; 166(1):55-68. PubMed ID: 28702892 [TBL] [Abstract][Full Text] [Related]
3. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. De Mattos-Arruda L; Bottai G; Nuciforo PG; Di Tommaso L; Giovannetti E; Peg V; Losurdo A; Pérez-Garcia J; Masci G; Corsi F; Cortés J; Seoane J; Calin GA; Santarpia L Oncotarget; 2015 Nov; 6(35):37269-80. PubMed ID: 26452030 [TBL] [Abstract][Full Text] [Related]
4. Metformin-induced preferential killing of breast cancer initiating CD44+CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Cufi S; Corominas-Faja B; Vazquez-Martin A; Oliveras-Ferraros C; Dorca J; Bosch-Barrera J; Martin-Castillo B; Menendez JA Oncotarget; 2012 Apr; 3(4):395-8. PubMed ID: 22565037 [TBL] [Abstract][Full Text] [Related]
5. Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Seo AN; Lee HJ; Kim EJ; Jang MH; Kim YJ; Kim JH; Kim SW; Ryu HS; Park IA; Im SA; Gong G; Jung KH; Kim HJ; Park SY Br J Cancer; 2016 May; 114(10):1109-16. PubMed ID: 27115469 [TBL] [Abstract][Full Text] [Related]
6. A preclinical evaluation of the PI3K alpha/delta dominant inhibitor BAY 80-6946 in HER2-positive breast cancer models with acquired resistance to the HER2-targeted therapies trastuzumab and lapatinib. Elster N; Cremona M; Morgan C; Toomey S; Carr A; O'Grady A; Hennessy BT; Eustace AJ Breast Cancer Res Treat; 2015 Jan; 149(2):373-83. PubMed ID: 25528022 [TBL] [Abstract][Full Text] [Related]
8. HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib. Valabrega G; Capellero S; Cavalloni G; Zaccarello G; Petrelli A; Migliardi G; Milani A; Peraldo-Neia C; Gammaitoni L; Sapino A; Pecchioni C; Moggio A; Giordano S; Aglietta M; Montemurro F Breast Cancer Res Treat; 2011 Nov; 130(1):29-40. PubMed ID: 21153051 [TBL] [Abstract][Full Text] [Related]
9. Expression of CD24 is associated with HER2 expression and supports HER2-Akt signaling in HER2-positive breast cancer cells. Hosonaga M; Arima Y; Sugihara E; Kohno N; Saya H Cancer Sci; 2014 Jul; 105(7):779-87. PubMed ID: 24754246 [TBL] [Abstract][Full Text] [Related]
10. Prospective Biomarker Analysis of the Randomized CHER-LOB Study Evaluating the Dual Anti-HER2 Treatment With Trastuzumab and Lapatinib Plus Chemotherapy as Neoadjuvant Therapy for HER2-Positive Breast Cancer. Guarneri V; Dieci MV; Frassoldati A; Maiorana A; Ficarra G; Bettelli S; Tagliafico E; Bicciato S; Generali DG; Cagossi K; Bisagni G; Sarti S; Musolino A; Ellis C; Crescenzo R; Conte P Oncologist; 2015 Sep; 20(9):1001-10. PubMed ID: 26245675 [TBL] [Abstract][Full Text] [Related]
11. RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer. Sanz-Moreno A; Palomeras S; Pedersen K; Morancho B; Pascual T; Galván P; Benítez S; Gomez-Miragaya J; Ciscar M; Jimenez M; Pernas S; Petit A; Soler-Monsó MT; Viñas G; Alsaleem M; Rakha EA; Green AR; Santamaria PG; Mulder C; Lemeer S; Arribas J; Prat A; Puig T; Gonzalez-Suarez E Breast Cancer Res; 2021 Mar; 23(1):42. PubMed ID: 33785053 [TBL] [Abstract][Full Text] [Related]
12. GDNF induces RET-SRC-HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells. Gardaneh M; Shojaei S; Kaviani A; Behnam B Breast Cancer Res Treat; 2017 Apr; 162(2):231-241. PubMed ID: 28116540 [TBL] [Abstract][Full Text] [Related]
13. PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis. Karicheva O; Rodriguez-Vargas JM; Wadier N; Martin-Hernandez K; Vauchelles R; Magroun N; Tissier A; Schreiber V; Dantzer F Oncotarget; 2016 Sep; 7(39):64109-64123. PubMed ID: 27579892 [TBL] [Abstract][Full Text] [Related]
14. The role of p95HER2 in trastuzumab resistance in breast cancer. Ozkavruk Eliyatkin N; Aktas S; Ozgur H; Ercetin P; Kupelioglu A J BUON; 2016; 21(2):382-9. PubMed ID: 27273948 [TBL] [Abstract][Full Text] [Related]
15. Current and future anti-HER2 therapy in breast cancer. Vrbic S; Pejcic I; Filipovic S; Kocic B; Vrbic M J BUON; 2013; 18(1):4-16. PubMed ID: 23613383 [TBL] [Abstract][Full Text] [Related]
16. HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2. Hanker AB; Garrett JT; Estrada MV; Moore PD; Ericsson PG; Koch JP; Langley E; Singh S; Kim PS; Frampton GM; Sanford E; Owens P; Becker J; Groseclose MR; Castellino S; Joensuu H; Huober J; Brase JC; Majjaj S; Brohée S; Venet D; Brown D; Baselga J; Piccart M; Sotiriou C; Arteaga CL Clin Cancer Res; 2017 Aug; 23(15):4323-4334. PubMed ID: 28381415 [No Abstract] [Full Text] [Related]
17. HER2/EGFR-AKT Signaling Switches TGFβ from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Huang F; Shi Q; Li Y; Xu L; Xu C; Chen F; Wang H; Liao H; Chang Z; Liu F; Zhang XH; Feng XH; Han JJ; Luo S; Chen YG Cancer Res; 2018 Nov; 78(21):6073-6085. PubMed ID: 30171053 [TBL] [Abstract][Full Text] [Related]