These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 28703360)

  • 1. Model averaging for robust assessment of QT prolongation by concentration-response analysis.
    Dosne AG; Bergstrand M; Karlsson MO; Renard D; Heimann G
    Stat Med; 2017 Oct; 36(24):3844-3857. PubMed ID: 28703360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple comparisons of repeated measured response: issues of assessment of prolongation of QT interval in thorough QT trials.
    Tsong Y; Zhong J
    J Biopharm Stat; 2010 May; 20(3):604-14. PubMed ID: 20358439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical characterization of QT prolongation.
    Schall R; Ring A
    J Biopharm Stat; 2010 May; 20(3):543-62. PubMed ID: 20358435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure-response modeling approach for assessing QT effect in "thorough" QT/QTc studies.
    Hosmane B; Locke C; Chiu YL
    J Biopharm Stat; 2010 May; 20(3):615-31. PubMed ID: 20358440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonparametric approach to QT interval correction for heart rate.
    Wang D; Cheung YB; Arezina R; Taubel J; Camm AJ
    J Biopharm Stat; 2010 May; 20(3):508-22. PubMed ID: 20358433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of QT interval prolongation through model-averaging.
    Bonate PL
    J Pharmacokinet Pharmacodyn; 2017 Aug; 44(4):335-349. PubMed ID: 28421417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QT analysis: a complex answer to a 'simple' problem.
    Li L; Desai M; Desta Z; Flockhart D
    Stat Med; 2004 Sep; 23(17):2625-43. PubMed ID: 15316947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed models for data from thorough QT studies: part 1. assessment of marginal QT prolongation.
    Schall R; Ring A
    Pharm Stat; 2011; 10(3):265-76. PubMed ID: 21574242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian measurement error approach to QT interval correction and prolongation.
    Chen J; Zhao X
    J Biopharm Stat; 2010 May; 20(3):523-42. PubMed ID: 20358434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences between study-specific and subject-specific heart rate corrections of the QT interval in investigations of drug induced QTc prolongation.
    Malik M; Hnatkova K; Batchvarov V
    Pacing Clin Electrophysiol; 2004 Jun; 27(6 Pt 1):791-800. PubMed ID: 15189536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model averaging inconcentration-QT analyses.
    Sébastien B; Hoffman D; Rigaux C; Pellissier F; Msihid J
    Pharm Stat; 2016 Nov; 15(6):450-458. PubMed ID: 27492846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample size and power estimation in "thorough" QT/QTc studies with parallel group design.
    Hosmane B; Locke C; Chiu YL
    J Biopharm Stat; 2010 May; 20(3):578-86. PubMed ID: 20358437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart rate correction models to detect QT interval prolongation in novel pharmaceutical development.
    Markert M; Shen R; Trautmann T; Guth B
    J Pharmacol Toxicol Methods; 2011; 64(1):25-41. PubMed ID: 21635956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical issues of QT prolongation assessment based on linear concentration modeling.
    Tsong Y; Shen M; Zhong J; Zhang J
    J Biopharm Stat; 2008; 18(3):564-84. PubMed ID: 18470764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Phase 1 study design on estimation of QT interval prolongation risk using exposure-response analysis.
    Tsamandouras N; Duvvuri S; Riley S
    J Pharmacokinet Pharmacodyn; 2019 Dec; 46(6):605-616. PubMed ID: 31664592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of several methods for analyzing data from thorough QT studies.
    Tian H; Qiao W; Natarajan J
    J Biopharm Stat; 2010 May; 20(3):632-40. PubMed ID: 20358441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the average baseline versus the time-matched baseline in parallel group thorough QT/QTc studies.
    Meng Z; Quan H; Fan L; Kringle R; Sun G
    J Biopharm Stat; 2010 May; 20(3):665-82. PubMed ID: 20358444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Results from the IQ-CSRC prospective study support replacement of the thorough QT study by QT assessment in the early clinical phase.
    Darpo B; Benson C; Dota C; Ferber G; Garnett C; Green CL; Jarugula V; Johannesen L; Keirns J; Krudys K; Liu J; Ortemann-Renon C; Riley S; Sarapa N; Smith B; Stoltz RR; Zhou M; Stockbridge N
    Clin Pharmacol Ther; 2015 Apr; 97(4):326-35. PubMed ID: 25670536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple comparisons of repeatedly measured response: issues of validation testing in thorough QT/QTc clinical trials.
    Tsong Y; Yan LK; Zhong J; Nie L; Zhang J
    J Biopharm Stat; 2010 May; 20(3):654-64. PubMed ID: 20358443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A powerful test for the maximum treatment effect in thorough QT/QTc studies.
    Deng Y; Chen F; Li Y; Qian K; Wang R; Zhou XH
    Stat Med; 2021 Apr; 40(8):1947-1959. PubMed ID: 33463746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.