These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28703882)

  • 41. Development of Lidocaine-Loaded Dissolving Microneedle for Rapid and Efficient Local Anesthesia.
    Yang H; Kang G; Jang M; Um DJ; Shin J; Kim H; Hong J; Jung H; Ahn H; Gong S; Lee C; Jung UW; Jung H
    Pharmaceutics; 2020 Nov; 12(11):. PubMed ID: 33182374
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfabricated microneedles for gene and drug delivery.
    McAllister DV; Allen MG; Prausnitz MR
    Annu Rev Biomed Eng; 2000; 2():289-313. PubMed ID: 11701514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systemic delivery of artemether by dissolving microneedles.
    Qiu Y; Li C; Zhang S; Yang G; He M; Gao Y
    Int J Pharm; 2016 Jul; 508(1-2):1-9. PubMed ID: 27150946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chitin microneedles for an easy-to-use tuberculosis skin test.
    Jin J; Reese V; Coler R; Carter D; Rolandi M
    Adv Healthc Mater; 2014 Mar; 3(3):349-53. PubMed ID: 23983170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physicochemical study of ascorbic acid 2-glucoside loaded hyaluronic acid dissolving microneedles irradiated by electron beam and gamma ray.
    Kim S; Lee J; Shayan FL; Kim S; Huh I; Ma Y; Yang H; Kang G; Jung H
    Carbohydr Polym; 2018 Jan; 180():297-303. PubMed ID: 29103509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-step fabrication of triple-layered polymeric microparticles with layer localization of drugs as a novel drug-delivery system.
    Lee WL; Widjaja E; Loo SC
    Small; 2010 May; 6(9):1003-11. PubMed ID: 20358528
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A continuous tilting of micromolds for fabricating polymeric microstructures in microinjection.
    Kim BI; Lee KG; Lee TJ; Choi BG; Park JY; Jung CY; Lee CS; Lee SJ
    Lab Chip; 2013 Nov; 13(22):4321-5. PubMed ID: 24056842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparative study of dissolving hyaluronic acid microneedles with trehalose and poly(vinyl pyrrolidone) for efficient peptide drug delivery.
    Kim HK; Lee SH; Lee BY; Kim SJ; Sung CY; Jang NK; Kim JD; Jeong DH; Ryu HY; Lee S
    Biomater Sci; 2018 Sep; 6(10):2566-2570. PubMed ID: 30106396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications.
    Chiellini F; Piras AM; Errico C; Chiellini E
    Nanomedicine (Lond); 2008 Jun; 3(3):367-93. PubMed ID: 18510431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In situ coating--an approach for particle modification and encapsulation of proteins during spray-drying.
    Elversson J; Millqvist-Fureby A
    Int J Pharm; 2006 Oct; 323(1-2):52-63. PubMed ID: 16887302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapidly separating microneedles for transdermal drug delivery.
    Zhu DD; Wang QL; Liu XB; Guo XD
    Acta Biomater; 2016 Sep; 41():312-9. PubMed ID: 27265152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microneedles for Transdermal Biosensing: Current Picture and Future Direction.
    Ventrelli L; Marsilio Strambini L; Barillaro G
    Adv Healthc Mater; 2015 Dec; 4(17):2606-40. PubMed ID: 26439100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery.
    Roxhed N; Griss P; Stemme G
    Biomed Microdevices; 2008 Apr; 10(2):271-9. PubMed ID: 17940907
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microneedles: a valuable physical enhancer to increase transdermal drug delivery.
    Escobar-Chávez JJ; Bonilla-Martínez D; Villegas-González MA; Molina-Trinidad E; Casas-Alancaster N; Revilla-Vázquez AL
    J Clin Pharmacol; 2011 Jul; 51(7):964-77. PubMed ID: 21148047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fabrication method of microneedle molds with controlled microstructures.
    Wang QL; Zhu DD; Chen Y; Guo XD
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():135-42. PubMed ID: 27157736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microneedles: bench to bedside.
    Kolli CS
    Ther Deliv; 2015; 6(9):1081-8. PubMed ID: 26419290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wound healing potential of antibacterial microneedles loaded with green tea extracts.
    Park SY; Lee HU; Lee YC; Kim GH; Park EC; Han SH; Lee JG; Choi S; Heo NS; Kim DL; Huh YS; Lee J
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():757-62. PubMed ID: 25063177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural characterisation and transdermal delivery studies on sugar microneedles: experimental and finite element modelling analyses.
    Loizidou EZ; Williams NA; Barrow DA; Eaton MJ; McCrory J; Evans SL; Allender CJ
    Eur J Pharm Biopharm; 2015 Jan; 89():224-31. PubMed ID: 25481031
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Application of MEMS microneedles array in biomedicine].
    Liu R; Wang X; Zhou Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):482-5. PubMed ID: 15250162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.