BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28704034)

  • 1. Unique Thermal Stability of Unnatural Hydrophobic Ds Bases in Double-Stranded DNAs.
    Kimoto M; Hirao I
    ACS Synth Biol; 2017 Oct; 6(10):1944-1951. PubMed ID: 28704034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Sequencing Method Including Unnatural Bases for DNA Aptamer Generation by Genetic Alphabet Expansion.
    Hamashima K; Soong YT; Matsunaga KI; Kimoto M; Hirao I
    ACS Synth Biol; 2019 Jun; 8(6):1401-1410. PubMed ID: 30995835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolving Aptamers with Unnatural Base Pairs.
    Kimoto M; Matsunaga KI; Hirao I
    Curr Protoc Chem Biol; 2017 Dec; 9(4):315-339. PubMed ID: 29241296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System.
    Kimoto M; Matsunaga K; Hirao I
    Methods Mol Biol; 2016; 1380():47-60. PubMed ID: 26552815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System.
    Okamoto I; Miyatake Y; Kimoto M; Hirao I
    ACS Synth Biol; 2016 Nov; 5(11):1220-1230. PubMed ID: 26814421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Genetic Alphabet Expansion: Synthesis of 7-(2-Thienyl)-Imidazo[4,5-b]pyridine (Ds) and 4-(4-Pentyne-1,2-diol)-1-Propynyl-2-Nitropyrrole (Diol-Px) for Use in Replicable Unnatural Base Pairs for PCR Applications.
    Tan HP; Kimoto M; Hirao I
    Curr Protoc; 2024 Apr; 4(4):e1009. PubMed ID: 38572677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly specific unnatural base pair systems as a third base pair for PCR amplification.
    Yamashige R; Kimoto M; Takezawa Y; Sato A; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Res; 2012 Mar; 40(6):2793-806. PubMed ID: 22121213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology.
    Kimoto M; Mitsui T; Yamashige R; Sato A; Yokoyama S; Hirao I
    J Am Chem Soc; 2010 Nov; 132(43):15418-26. PubMed ID: 20939572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology.
    Hamashima K; Kimoto M; Hirao I
    Curr Opin Chem Biol; 2018 Oct; 46():108-114. PubMed ID: 30059833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems.
    Kimoto M; Sato A; Kawai R; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2009; (53):73-4. PubMed ID: 19749266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognate base-pair selectivity of hydrophobic unnatural bases in DNA ligation by T4 DNA ligase.
    Kimoto M; Soh SHG; Tan HP; Okamoto I; Hirao I
    Biopolymers; 2021 Jan; 112(1):e23407. PubMed ID: 33156531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient unnatural base pair for PCR amplification.
    Hirao I; Mitsui T; Kimoto M; Yokoyama S
    J Am Chem Soc; 2007 Dec; 129(50):15549-55. PubMed ID: 18027940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCR amplification and transcription for site-specific labeling of large RNA molecules by a two-unnatural-base-pair system.
    Kimoto M; Yamashige R; Yokoyama S; Hirao I
    J Nucleic Acids; 2012; 2012():230943. PubMed ID: 22792445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific incorporation of extra components into RNA by transcription using unnatural base pair systems.
    Kimoto M; Hirao I
    Methods Mol Biol; 2010; 634():355-69. PubMed ID: 20676996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the site-specific incorporation of dual fluorophore-quencher base analogues for target DNA detection by an unnatural base pair system.
    Yamashige R; Kimoto M; Mitsui T; Yokoyama S; Hirao I
    Org Biomol Chem; 2011 Nov; 9(21):7504-9. PubMed ID: 21935564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic alphabet expansion biotechnology by creating unnatural base pairs.
    Lee KH; Hamashima K; Kimoto M; Hirao I
    Curr Opin Biotechnol; 2018 Jun; 51():8-15. PubMed ID: 29049900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma.
    Hirao I; Kimoto M
    Proc Jpn Acad Ser B Phys Biol Sci; 2012; 88(7):345-67. PubMed ID: 22850726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.
    Matsunaga KI; Kimoto M; Hirao I
    J Am Chem Soc; 2017 Jan; 139(1):324-334. PubMed ID: 27966933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.
    Kimoto M; Nakamura M; Hirao I
    Nucleic Acids Res; 2016 Sep; 44(15):7487-94. PubMed ID: 27387284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.