BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 28704219)

  • 1. Inflammaging and the Age-Specific Responsiveness to Stretch-Shortening Contractions.
    Rader EP; Baker BA
    Exerc Sport Sci Rev; 2017 Oct; 45(4):195-200. PubMed ID: 28704219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats.
    Rader EP; Naimo MA; Ensey J; Baker BA
    Exp Gerontol; 2018 Apr; 104():118-126. PubMed ID: 29438735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training.
    Rader EP; Naimo MA; Ensey J; Baker BA
    BMC Musculoskelet Disord; 2017 Feb; 18(1):60. PubMed ID: 28148306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated stretch-shortening contraction of the triceps surae attenuates muscle atrophy and liver dysfunction in a rat model of inflammation.
    Sumi K; Ashida K; Nakazato K
    Exp Physiol; 2020 Jul; 105(7):1111-1123. PubMed ID: 32394614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive stretch-shortening contractions: diminished regenerative capacity with aging.
    Baker BA; Hollander MS; Mercer RR; Kashon ML; Cutlip RG
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1181-91. PubMed ID: 19088776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training.
    Rader EP; Naimo MA; Layner KN; Triscuit AM; Chetlin RD; Ensey J; Baker BA
    Rejuvenation Res; 2017 Apr; 20(2):93-102. PubMed ID: 27378453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammation and Oxidative Stress Limit Adaptation to Stretch-Shortening Contractions in Aging.
    Alway SE
    Exerc Sport Sci Rev; 2017 Oct; 45(4):194. PubMed ID: 28704215
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of glutathione depletion and age on skeletal muscle performance and morphology following chronic stretch-shortening contraction exposure.
    Baker BA; Hollander MS; Kashon ML; Cutlip RG
    Eur J Appl Physiol; 2010 Feb; 108(3):619-30. PubMed ID: 19882165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic exposure to stretch-shortening contractions results in skeletal muscle adaptation in young rats and maladaptation in old rats.
    Cutlip RG; Baker BA; Geronilla KB; Mercer RR; Kashon ML; Miller GR; Murlasits Z; Alway SE
    Appl Physiol Nutr Metab; 2006 Oct; 31(5):573-87. PubMed ID: 17111012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of velocity of stretch-shortening contractions on muscle performance during chronic exposure: age effects.
    Cutlip RG; Baker BA; Geronilla KB; Kashon ML; Wu JZ
    Appl Physiol Nutr Metab; 2007 Jun; 32(3):443-53. PubMed ID: 17510679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical, hormonal, and hypertrophic adaptations to 10 weeks of eccentric and stretch-shortening cycle exercise training in old males.
    Váczi M; Nagy SA; Kőszegi T; Ambrus M; Bogner P; Perlaki G; Orsi G; Tóth K; Hortobágyi T
    Exp Gerontol; 2014 Oct; 58():69-77. PubMed ID: 25064038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of effort and EMG levels on short-latency stretch reflex modulation after varying background muscle contractions.
    Ogiso K; McBride JM; Finni T; Komi PV
    J Electromyogr Kinesiol; 2005 Aug; 15(4):333-40. PubMed ID: 15811603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo assessment of elbow flexor work and activation during stretch-shortening cycle tasks.
    Benoit DL; Dowling JJ
    J Electromyogr Kinesiol; 2006 Aug; 16(4):352-64. PubMed ID: 16263310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic force responses of skeletal muscle during stretch-shortening cycles.
    Geronilla KB; Miller GR; Mowrey KF; Wu JZ; Kashon ML; Brumbaugh K; Reynolds J; Hubbs A; Cutlip RG
    Eur J Appl Physiol; 2003 Sep; 90(1-2):144-53. PubMed ID: 14504946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leg stiffness modulation during exhaustive stretch-shortening cycle exercise.
    Kuitunen S; Kyröläinen H; Avela J; Komi PV
    Scand J Med Sci Sports; 2007 Feb; 17(1):67-75. PubMed ID: 17305941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of shortening on stretch-induced force enhancement in single skeletal muscle fibers.
    Rassier DE; Herzog W
    J Biomech; 2004 Sep; 37(9):1305-12. PubMed ID: 15275837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peak power of muscles injured by lengthening contractions.
    Widrick JJ; Barker T
    Muscle Nerve; 2006 Oct; 34(4):470-7. PubMed ID: 16810694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil accumulation following passive stretches contributes to adaptations that reduce contraction-induced skeletal muscle injury in mice.
    Lockhart NC; Brooks SV
    J Appl Physiol (1985); 2008 Apr; 104(4):1109-15. PubMed ID: 18276901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle injury versus adaptation with aging: novel insights on perplexing paradigms.
    Baker BA; Cutlip RG
    Exerc Sport Sci Rev; 2010 Jan; 38(1):10-6. PubMed ID: 20016294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is repetition failure critical for the development of muscle hypertrophy and strength?
    Sampson JA; Groeller H
    Scand J Med Sci Sports; 2016 Apr; 26(4):375-83. PubMed ID: 25809472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.