These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 28704474)
1. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption. Staroń R; Lipiński P; Lenartowicz M; Bednarz A; Gajowiak A; Smuda E; Krzeptowski W; Pieszka M; Korolonek T; Hamza I; Swinkels DW; Van Swelm RPL; Starzyński RR PLoS One; 2017; 12(7):e0181117. PubMed ID: 28704474 [TBL] [Abstract][Full Text] [Related]
2. Relationship between Down-Regulation of Copper-Related Genes and Decreased Ferroportin Protein Level in the Duodenum of Iron-Deficient Piglets. Jończy A; Mazgaj R; Starzyński RR; Poznański P; Szudzik M; Smuda E; Kamyczek M; Lipiński P Nutrients; 2020 Dec; 13(1):. PubMed ID: 33396831 [TBL] [Abstract][Full Text] [Related]
3. Iron Supplementation Attenuates the Inflammatory Status of Anemic Piglets by Regulating Hepcidin. Pu Y; Guo B; Liu D; Xiong H; Wang Y; Du H Biol Trace Elem Res; 2015 Sep; 167(1):28-35. PubMed ID: 25774043 [TBL] [Abstract][Full Text] [Related]
4. Effects of heme iron enriched peptide on iron deficiency anemia in rats. Tang N; Chen LQ; Zhuang H Food Funct; 2014 Feb; 5(2):390-9. PubMed ID: 24326613 [TBL] [Abstract][Full Text] [Related]
5. Benefits and risks of iron supplementation in anemic neonatal pigs. Lipinski P; Starzyński RR; Canonne-Hergaux F; Tudek B; Oliński R; Kowalczyk P; Dziaman T; Thibaudeau O; Gralak MA; Smuda E; Woliński J; Usińska A; Zabielski R Am J Pathol; 2010 Sep; 177(3):1233-43. PubMed ID: 20805566 [TBL] [Abstract][Full Text] [Related]
6. Split iron supplementation is beneficial for newborn piglets. Chen X; Zhang X; Zhao J; Tang X; Wang F; Du H Biomed Pharmacother; 2019 Dec; 120():109479. PubMed ID: 31557572 [TBL] [Abstract][Full Text] [Related]
7. Maternal protein restriction depresses the duodenal expression of iron transporters and serum iron level in male weaning piglets. Ma W; Lu J; Jiang S; Cai D; Pan S; Jia Y; Zhao R Br J Nutr; 2017 Apr; 117(7):923-929. PubMed ID: 28534724 [TBL] [Abstract][Full Text] [Related]
8. Mild copper deficiency alters gene expression of proteins involved in iron metabolism. Auclair S; Feillet-Coudray C; Coudray C; Schneider S; Muckenthaler MU; Mazur A Blood Cells Mol Dis; 2006; 36(1):15-20. PubMed ID: 16406711 [TBL] [Abstract][Full Text] [Related]
9. Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency. Kobayashi M; Kato H; Hada H; Itoh-Nakadai A; Fujiwara T; Muto A; Inoguchi Y; Ichiyanagi K; Hojo W; Tomosugi N; Sasaki H; Harigae H; Igarashi K Haematologica; 2017 Mar; 102(3):454-465. PubMed ID: 27927768 [TBL] [Abstract][Full Text] [Related]
11. Adaptive changes of duodenal iron transport proteins in celiac disease. Barisani D; Parafioriti A; Bardella MT; Zoller H; Conte D; Armiraglio E; Trovato C; Koch RO; Weiss G Physiol Genomics; 2004 May; 17(3):316-25. PubMed ID: 15054143 [TBL] [Abstract][Full Text] [Related]
12. Bioavailability of iron multi-amino acid chelate preparation in mice and human duodenal HuTu 80 cells. Kajarabille N; Brown C; Cucliciu A; Thapaliya G; Latunde-Dada GO Br J Nutr; 2017 Mar; 117(6):767-774. PubMed ID: 28452291 [TBL] [Abstract][Full Text] [Related]
13. Iron metabolism in hepcidin1 knockout mice in response to phenylhydrazine-induced hemolysis. Masaratana P; Latunde-Dada GO; Patel N; Simpson RJ; Vaulont S; McKie AT Blood Cells Mol Dis; 2012 Aug; 49(2):85-91. PubMed ID: 22609087 [TBL] [Abstract][Full Text] [Related]
14. Structural and cellular adaptation of duodenal iron uptake in rats maintained on an iron-deficient diet. Smith MW; Debnam ES; Dashwood MR; Srai SK Pflugers Arch; 2000 Feb; 439(4):449-54. PubMed ID: 10678741 [TBL] [Abstract][Full Text] [Related]
15. Identification of differentially expressed genes in response to dietary iron deprivation in rat duodenum. Collins JF; Franck CA; Kowdley KV; Ghishan FK Am J Physiol Gastrointest Liver Physiol; 2005 May; 288(5):G964-71. PubMed ID: 15637178 [TBL] [Abstract][Full Text] [Related]
16. Comparative studies of duodenal and macrophage ferroportin proteins. Canonne-Hergaux F; Donovan A; Delaby C; Wang HJ; Gros P Am J Physiol Gastrointest Liver Physiol; 2006 Jan; 290(1):G156-63. PubMed ID: 16081760 [TBL] [Abstract][Full Text] [Related]
17. Expression profiles of iron transport molecules along the duodenum. Balusikova K; Dostalikova-Cimburova M; Tacheci I; Kovar J J Cell Mol Med; 2022 May; 26(10):2995-3004. PubMed ID: 35445529 [TBL] [Abstract][Full Text] [Related]
18. Partially Hydrolyzed Guar Gum Increases Ferroportin Expression in the Colon of Anemic Growing Rats. Carvalho L; Brait D; Vaz M; Lollo P; Morato P; Oesterreich S; Raposo J; Freitas K Nutrients; 2017 Mar; 9(3):. PubMed ID: 28273797 [TBL] [Abstract][Full Text] [Related]
19. High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. Hansen SL; Ashwell MS; Moeser AJ; Fry RS; Knutson MD; Spears JW J Dairy Sci; 2010 Feb; 93(2):656-65. PubMed ID: 20105537 [TBL] [Abstract][Full Text] [Related]
20. Age-dependent expression of duodenal cytochrome b, divalent metal transporter 1, ferroportin 1, and hephaestin in the duodenum of rats. Kong WN; Wu Q; Shen D; Zhao SE; Guo P; Duan XL; Chang YZ J Gastroenterol Hepatol; 2015 Mar; 30(3):513-20. PubMed ID: 25318588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]