These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 28704493)
1. Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics. Saldaño TE; Zanotti G; Parisi G; Fernandez-Alberti S PLoS One; 2017; 12(7):e0181019. PubMed ID: 28704493 [TBL] [Abstract][Full Text] [Related]
2. Kinetic stabilization of the native state by protein engineering: implications for inhibition of transthyretin amyloidogenesis. Foss TR; Kelker MS; Wiseman RL; Wilson IA; Kelly JW J Mol Biol; 2005 Apr; 347(4):841-54. PubMed ID: 15769474 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic Stability and Aggregation Kinetics of EF Helix and EF Loop Variants of Transthyretin. Ferguson JA; Sun X; Dyson HJ; Wright PE Biochemistry; 2021 Mar; 60(10):756-764. PubMed ID: 33645214 [TBL] [Abstract][Full Text] [Related]
4. Structural evidence for asymmetric ligand binding to transthyretin. Cianci M; Folli C; Zonta F; Florio P; Berni R; Zanotti G Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1582-92. PubMed ID: 26249340 [TBL] [Abstract][Full Text] [Related]
5. Structural insight into pH-induced conformational changes within the native human transthyretin tetramer. Palaninathan SK; Mohamedmohaideen NN; Snee WC; Kelly JW; Sacchettini JC J Mol Biol; 2008 Oct; 382(5):1157-67. PubMed ID: 18662699 [TBL] [Abstract][Full Text] [Related]
6. Intrinsic versus mutation dependent instability/flexibility: a comparative analysis of the structure and dynamics of wild-type transthyretin and its pathogenic variants. Lei M; Yang M; Huo S J Struct Biol; 2004 Nov; 148(2):153-68. PubMed ID: 15477096 [TBL] [Abstract][Full Text] [Related]
7. Chromium(III) ion and thyroxine cooperate to stabilize the transthyretin tetramer and suppress in vitro amyloid fibril formation. Sato T; Ando Y; Susuki S; Mikami F; Ikemizu S; Nakamura M; Suhr O; Anraku M; Kai T; Suico MA; Shuto T; Mizuguchi M; Yamagata Y; Kai H FEBS Lett; 2006 Jan; 580(2):491-6. PubMed ID: 16386248 [TBL] [Abstract][Full Text] [Related]
8. Conformational differences between the wild type and V30M mutant transthyretin modulate its binding to genistein: implications to tetramer stability and ligand-binding. Trivella DB; Bleicher L; Palmieri Lde C; Wiggers HJ; Montanari CA; Kelly JW; Lima LM; Foguel D; Polikarpov I J Struct Biol; 2010 Jun; 170(3):522-31. PubMed ID: 20211733 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic study of novel transthyretin ligands exhibiting negative-cooperativity between two thyroxine binding sites. Tomar D; Khan T; Singh RR; Mishra S; Gupta S; Surolia A; Salunke DM PLoS One; 2012; 7(9):e43522. PubMed ID: 22973437 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of potent bivalent amyloidosis inhibitors that bind prior to transthyretin tetramerization. Green NS; Palaninathan SK; Sacchettini JC; Kelly JW J Am Chem Soc; 2003 Nov; 125(44):13404-14. PubMed ID: 14583036 [TBL] [Abstract][Full Text] [Related]
11. Nearly 200 X-ray crystal structures of transthyretin: what do they tell us about this protein and the design of drugs for TTR amyloidoses? Palaninathan SK Curr Med Chem; 2012; 19(15):2324-42. PubMed ID: 22471981 [TBL] [Abstract][Full Text] [Related]
12. Role of the glutamic acid 54 residue in transthyretin stability and thyroxine binding. Miyata M; Sato T; Mizuguchi M; Nakamura T; Ikemizu S; Nabeshima Y; Susuki S; Suwa Y; Morioka H; Ando Y; Suico MA; Shuto T; Koga T; Yamagata Y; Kai H Biochemistry; 2010 Jan; 49(1):114-23. PubMed ID: 19950966 [TBL] [Abstract][Full Text] [Related]
13. Kinetic stabilization of an oligomeric protein under physiological conditions demonstrated by a lack of subunit exchange: implications for transthyretin amyloidosis. Wiseman RL; Green NS; Kelly JW Biochemistry; 2005 Jun; 44(25):9265-74. PubMed ID: 15966751 [TBL] [Abstract][Full Text] [Related]
14. Conformational Dynamics of an Amyloidogenic Intermediate of Transthyretin: Implications for Structural Remodeling and Amyloid Formation. Leach BI; Ferguson JA; Morgan G; Sun X; Kroon G; Oyen D; Dyson HJ; Wright PE J Mol Biol; 2024 Aug; 436(16):168673. PubMed ID: 38909653 [TBL] [Abstract][Full Text] [Related]
15. Amyloidogenic potential of transthyretin variants: insights from structural and computational analyses. Cendron L; Trovato A; Seno F; Folli C; Alfieri B; Zanotti G; Berni R J Biol Chem; 2009 Sep; 284(38):25832-41. PubMed ID: 19602727 [TBL] [Abstract][Full Text] [Related]
17. Transthyretin microheterogeneity and molecular interactions: implications for amyloid formation. Landreh M; Ostberg LJ; Pettersson TM; Jörnvall H Biomol Concepts; 2014 Jun; 5(3):257-64. PubMed ID: 25372757 [TBL] [Abstract][Full Text] [Related]
18. Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis. Sörgjerd K; Ghafouri B; Jonsson BH; Kelly JW; Blond SY; Hammarström P J Mol Biol; 2006 Feb; 356(2):469-82. PubMed ID: 16376939 [TBL] [Abstract][Full Text] [Related]
19. Kinetic stabilization of an oligomeric protein by a single ligand binding event. Wiseman RL; Johnson SM; Kelker MS; Foss T; Wilson IA; Kelly JW J Am Chem Soc; 2005 Apr; 127(15):5540-51. PubMed ID: 15826192 [TBL] [Abstract][Full Text] [Related]
20. Transthyretin stability as a key factor in amyloidogenesis: X-ray analysis at atomic resolution. Sebastião MP; Lamzin V; Saraiva MJ; Damas AM J Mol Biol; 2001 Mar; 306(4):733-44. PubMed ID: 11243784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]