These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28704578)

  • 41. Multi-functionality of macroporous TiO2 spheres in dye-sensitized and hybrid heterojunction solar cells.
    Veerappan G; Jung DW; Kwon J; Choi JM; Heo N; Yi GR; Park JH
    Langmuir; 2014 Mar; 30(11):3010-8. PubMed ID: 24571409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells.
    Wu WQ; Xu YF; Rao HS; Su CY; Kuang DB
    Nanoscale; 2013 May; 5(10):4362-9. PubMed ID: 23571714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode.
    Srinivasa Rao S; Punnoose D; Venkata Tulasivarma Ch; Pavan Kumar CH; Gopi CV; Kim SK; Kim HJ
    Dalton Trans; 2015 Feb; 44(5):2447-55. PubMed ID: 25556975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal.
    Guo M; Xie K; Liu X; Wang Y; Zhou L; Huang H
    Nanoscale; 2014 Nov; 6(21):13060-7. PubMed ID: 25247717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photocurrent enhanced dye-sensitized solar cells based on TiO2 loaded K6SiW11O39Co(II)(H2O)·xH2O photoanode materials.
    Li L; Yang Y; Fan R; Wang X; Zhang Q; Zhang L; Yang B; Cao W; Zhang W; Wang Y; Ma L
    Dalton Trans; 2014 Jan; 43(4):1577-82. PubMed ID: 24213738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-Covalent Postfunctionalization of Dye Layers on TiO
    Luchs T; Zieleniewska A; Kunzmann A; Schol PR; Guldi DM; Hirsch A
    Chemistry; 2021 Mar; 27(15):5041-5050. PubMed ID: 33428285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved performance of dye-sensitized solar cells using gallium nitride-titanium dioxide composite photoelectrodes.
    Huang YR; Huang TW; Wang TH; Tsai YC
    J Colloid Interface Sci; 2014 Aug; 428():128-32. PubMed ID: 24910044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells.
    Mir N; Lee K; Paramasivam I; Schmuki P
    Chemistry; 2012 Sep; 18(38):11862-6. PubMed ID: 22890982
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study.
    Dong C; Li X; Zhao W; Jin P; Fan X; Qi J
    Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.
    Xie ZB; Adams S; Blackwood DJ; Wang J
    Nanotechnology; 2008 Oct; 19(40):405701. PubMed ID: 21832630
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlled interfacial electron dynamics in highly efficient Zn2 SnO4 -based dye-sensitized solar cells.
    Shin SS; Kim DW; Hwang D; Suk JH; Oh LS; Han BS; Kim DH; Kim JS; Kim D; Kim JY; Hong KS
    ChemSusChem; 2014 Feb; 7(2):501-9. PubMed ID: 24347268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays.
    Jen HP; Lin MH; Li LL; Wu HP; Huang WK; Cheng PJ; Diau EW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10098-104. PubMed ID: 24050628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gold-silver@TiO
    Lim SP; Lim YS; Pandikumar A; Lim HN; Ng YH; Ramaraj R; Bien DC; Abou-Zied OK; Huang NM
    Phys Chem Chem Phys; 2017 Jan; 19(2):1395-1407. PubMed ID: 27976767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.
    Inoue I; Watanabe K; Yamauchi H; Ishikawa Y; Yasueda H; Uraoka Y; Yamashita I
    ChemSusChem; 2014 Oct; 7(10):2805-10. PubMed ID: 25111295
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells.
    Selopal GS; Wu HP; Lu J; Chang YC; Wang M; Vomiero A; Concina I; Diau EW
    Sci Rep; 2016 Jan; 6():18756. PubMed ID: 26738698
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-Performance and Stable Gel-State Dye-Sensitized Solar Cells Using Anodic TiO2 Nanotube Arrays and Polymer-Based Gel Electrolytes.
    Seidalilir Z; Malekfar R; Wu HP; Shiu JW; Diau EW
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12731-9. PubMed ID: 25984747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improvement of photovoltaic efficiency of dye-sensitized solar cell by introducing highly transparent nanoporous TiO2 buffer layer.
    Kim YJ; Kim HJ; Lee MH; Lim GI; Song HY; Choi YS; Park NG; Lee C; Lee WI
    J Nanosci Nanotechnol; 2010 Jan; 10(1):340-4. PubMed ID: 20352858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Room temperature synthesis of rutile TiO2 hierarchical nanoneedle flower morphology for dye sensitized solar cell.
    Hyam RS; Bhosale RK; Lee W; Han SH; Hannoyer B; Ogale SB
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5894-8. PubMed ID: 21133123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NiO-decorated mesoporous TiO2 flowers for an improved photovoltaic dye sensitized solar cell.
    Zhi J; Chen A; Cui H; Xie Y; Huang F
    Phys Chem Chem Phys; 2015 Feb; 17(7):5103-8. PubMed ID: 25600889
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of hybrid blocking layers in solid-state dye-sensitized solar cells.
    Lellig P; Meister M; Ochsmann JW; Niedermeier MA; Rawolle M; Laquai F; Müller-Buschbaum P; Gutmann JS
    Springerplus; 2015; 4():502. PubMed ID: 26405622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.