BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 28704666)

  • 21. A novel TiO
    Lu L; Shan R; Shi Y; Wang S; Yuan H
    Chemosphere; 2019 May; 222():391-398. PubMed ID: 30711728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. UV/Vis Light Induced Degradation of Oxytetracycline Hydrochloride Mediated byCo-TiO
    Akel S; Boughaled R; Dillert R; El Azzouzi M; Bahnemann DW
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31936177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles.
    Chiou CH; Juang RS
    J Hazard Mater; 2007 Oct; 149(1):1-7. PubMed ID: 17433857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.
    Shanmugam M; Alsalme A; Alghamdi A; Jayavel R
    J Photochem Photobiol B; 2016 Oct; 163():216-23. PubMed ID: 27588719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation.
    Zhai C; Zhu M; Ren F; Yao Z; Du Y; Yang P
    J Hazard Mater; 2013 Dec; 263 Pt 2():291-8. PubMed ID: 24091125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2.
    Shankar MV; Anandan S; Venkatachalam N; Arabindoo B; Murugesan V
    Chemosphere; 2006 May; 63(6):1014-21. PubMed ID: 16289243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic degradation of humic acids using substrate-supported Fe³⁺-doped TiO₂ nanotubes under UV/O₃ for water purification.
    Yuan R; Zhou B; Zhang X; Guan H
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17955-64. PubMed ID: 26165990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electro-photocatalytic degradation of acid orange II using a novel TiO2/ACF photoanode.
    Hou Y; Qu J; Zhao X; Lei P; Wan D; Huang CP
    Sci Total Environ; 2009 Mar; 407(7):2431-9. PubMed ID: 19171372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of coral-globular-like composite Ag/TiO
    Song Q; Li L; Zhuo N; Zhang HN; Chen X; Li YX
    Water Sci Technol; 2017 Oct; 76(7-8):2120-2132. PubMed ID: 29068341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dye-sensitized TiO
    Lu N; Yeh YP; Wang GB; Feng TY; Shih YH; Chen D
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):489-499. PubMed ID: 27730507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalytic Degradation and Toxicity Analysis of Sulfamethoxazole using TiO
    Dang J; Pei W; Hu F; Yu Z; Zhao S; Hu J; Liu J; Zhang D; Jing Z; Lei X
    Toxics; 2023 Sep; 11(10):. PubMed ID: 37888669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photocatalytic performance of TiO
    Dzinun H; Othman MHD; Ismail AF
    Chemosphere; 2019 Aug; 228():241-248. PubMed ID: 31035161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced photocatalytic efficacy of hetropolyacid pillared TiO2 nanocomposites.
    Nivea R; Gunasekaran V; Kannan R; Sakthivel T; Govindan K
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4383-6. PubMed ID: 24738400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competitive adsorption of tylosin, sulfamethoxazole and Cu(II) on nano-hydroxyapatitemodified biochar in water.
    Li Z; Wang Z; Wu X; Li M; Liu X
    Chemosphere; 2020 Feb; 240():124884. PubMed ID: 31542586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of biochar in the photocatalytic treatment of a mixture of Cr(VI) and phenol pollutants: Biochar as a carrier for transferring and storing electrons.
    Hou N; Li X; Jiang X; Zhang N; Wang R; Li D
    Sci Total Environ; 2022 Oct; 844():157145. PubMed ID: 35798118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation.
    Wang X; Wu Z; Wang Y; Wang W; Wang X; Bu Y; Zhao J
    J Hazard Mater; 2013 Nov; 262():16-24. PubMed ID: 24004575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst.
    Ding S; Niu J; Bao Y; Hu L
    J Hazard Mater; 2013 Nov; 262():812-8. PubMed ID: 24140532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO
    Lin L; Wang H; Jiang W; Mkaouar AR; Xu P
    J Hazard Mater; 2017 Jul; 333():162-168. PubMed ID: 28351797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocatalytic degradation of the herbicide pendimethalin using nanoparticles of BaTiO3/TiO2 prepared by gel to crystalline conversion method: a kinetic approach.
    Gomathi Devi LN; Krishnamurthy G
    J Environ Sci Health B; 2008 Sep; 43(7):553-61. PubMed ID: 18803109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater.
    Baransi K; Dubowski Y; Sabbah I
    Water Res; 2012 Mar; 46(3):789-98. PubMed ID: 22153960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.