These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 28704739)
1. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology. Bayat Tork M; Khalilzadeh R; Kouchakzadeh H Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH. Huang Y; Wei C; Liao Q; Xia A; Zhu X; Zhu X Bioresour Technol; 2019 Mar; 276():133-139. PubMed ID: 30623867 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the energy barrier between Chlorella vulgaris cells and their interfacial interactions with cationic starch under different pH and ionic strength. Wei C; Huang Y; Liao Q; Xia A; Zhu X; Zhu X Bioresour Technol; 2020 May; 304():123012. PubMed ID: 32085903 [TBL] [Abstract][Full Text] [Related]
4. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Vandamme D; Eyley S; Van den Mooter G; Muylaert K; Thielemans W Bioresour Technol; 2015 Oct; 194():270-5. PubMed ID: 26210139 [TBL] [Abstract][Full Text] [Related]
5. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Letelier-Gordo CO; Holdt SL; De Francisci D; Karakashev DB; Angelidaki I Bioresour Technol; 2014 Sep; 167():214-8. PubMed ID: 24983692 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method. Wong YK; Ho YH; Leung HM; Ho KC; Yau YH; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9102-9110. PubMed ID: 28039627 [TBL] [Abstract][Full Text] [Related]
7. Microwave assisted flocculation for harvesting of Chlorella vulgaris. Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448 [TBL] [Abstract][Full Text] [Related]
8. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. Lei X; Chen Y; Shao Z; Chen Z; Li Y; Zhu H; Zhang J; Zheng W; Zheng T Bioresour Technol; 2015 Dec; 198():922-5. PubMed ID: 26391967 [TBL] [Abstract][Full Text] [Related]
9. Using magnetic materials to harvest microalgal biomass: evaluation of harvesting and detachment efficiency. Zhu LD; Hiltunen E; Li Z Environ Technol; 2019 Mar; 40(8):1006-1012. PubMed ID: 29219747 [TBL] [Abstract][Full Text] [Related]
10. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396 [TBL] [Abstract][Full Text] [Related]
11. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach. Xu K; Zou X; Wen H; Xue Y; Zhao S; Li Y Bioresour Technol; 2018 Nov; 267():341-346. PubMed ID: 30029180 [TBL] [Abstract][Full Text] [Related]
12. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Wang Y; Yang Y; Ma F; Xuan L; Xu Y; Huo H; Zhou D; Dong S Lett Appl Microbiol; 2015 May; 60(5):497-503. PubMed ID: 25693426 [TBL] [Abstract][Full Text] [Related]
13. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae. Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233 [TBL] [Abstract][Full Text] [Related]
14. Efficient microalgae harvesting using a thermal flotation method with response surface methodology. Zou X; Xu K; Wen H; Xue Y; Qu Y; Li Y Water Sci Technol; 2019 Aug; 80(3):426-436. PubMed ID: 31596254 [TBL] [Abstract][Full Text] [Related]
15. Synergistic effect and mechanisms of compound bioflocculant and AlCl3 salts on enhancing Chlorella regularis harvesting. Zhang C; Wang X; Wang Y; Li Y; Zhou D; Jia Y Appl Microbiol Biotechnol; 2016 Jun; 100(12):5653-60. PubMed ID: 27102131 [TBL] [Abstract][Full Text] [Related]
16. Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants. Peng C; Li S; Zheng J; Huang S; Li D Appl Biochem Biotechnol; 2017 Jan; 181(1):112-124. PubMed ID: 27457760 [TBL] [Abstract][Full Text] [Related]
17. Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies. Suparmaniam U; Lam MK; Uemura Y; Shuit SH; Lim JW; Show PL; Lee KT; Matsumura Y; Le PTK Sci Total Environ; 2020 Feb; 702():134995. PubMed ID: 31710849 [TBL] [Abstract][Full Text] [Related]
18. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514 [TBL] [Abstract][Full Text] [Related]
19. A continuous flocculants-free electrolytic flotation system for microalgae harvesting. Luo S; Griffith R; Li W; Peng P; Cheng Y; Chen P; Addy MM; Liu Y; Ruan R Bioresour Technol; 2017 Aug; 238():439-449. PubMed ID: 28460364 [TBL] [Abstract][Full Text] [Related]
20. The use of natural organic flocculants for harvesting microalgae grown in municipal wastewater at different culture densities. Niemi C; Gentili FG Physiol Plant; 2021 Oct; 173(2):536-542. PubMed ID: 33779990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]