BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 28704739)

  • 1. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.
    Bayat Tork M; Khalilzadeh R; Kouchakzadeh H
    Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable branched cationic starch with high C/N ratio for Chlorella vulgaris cells concentration: Regulating microalgae flocculation performance by pH.
    Huang Y; Wei C; Liao Q; Xia A; Zhu X; Zhu X
    Bioresour Technol; 2019 Mar; 276():133-139. PubMed ID: 30623867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the energy barrier between Chlorella vulgaris cells and their interfacial interactions with cationic starch under different pH and ionic strength.
    Wei C; Huang Y; Liao Q; Xia A; Zhu X; Zhu X
    Bioresour Technol; 2020 May; 304():123012. PubMed ID: 32085903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris.
    Vandamme D; Eyley S; Van den Mooter G; Muylaert K; Thielemans W
    Bioresour Technol; 2015 Oct; 194():270-5. PubMed ID: 26210139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch.
    Letelier-Gordo CO; Holdt SL; De Francisci D; Karakashev DB; Angelidaki I
    Bioresour Technol; 2014 Sep; 167():214-8. PubMed ID: 24983692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method.
    Wong YK; Ho YH; Leung HM; Ho KC; Yau YH; Yung KK
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9102-9110. PubMed ID: 28039627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave assisted flocculation for harvesting of Chlorella vulgaris.
    Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R
    Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant.
    Lei X; Chen Y; Shao Z; Chen Z; Li Y; Zhu H; Zhang J; Zheng W; Zheng T
    Bioresour Technol; 2015 Dec; 198():922-5. PubMed ID: 26391967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using magnetic materials to harvest microalgal biomass: evaluation of harvesting and detachment efficiency.
    Zhu LD; Hiltunen E; Li Z
    Environ Technol; 2019 Mar; 40(8):1006-1012. PubMed ID: 29219747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective harvesting of microalgae: Comparison of different polymeric flocculants.
    Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y
    Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach.
    Xu K; Zou X; Wen H; Xue Y; Zhao S; Li Y
    Bioresour Technol; 2018 Nov; 267():341-346. PubMed ID: 30029180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.
    Wang Y; Yang Y; Ma F; Xuan L; Xu Y; Huo H; Zhou D; Dong S
    Lett Appl Microbiol; 2015 May; 60(5):497-503. PubMed ID: 25693426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
    Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP
    Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient microalgae harvesting using a thermal flotation method with response surface methodology.
    Zou X; Xu K; Wen H; Xue Y; Qu Y; Li Y
    Water Sci Technol; 2019 Aug; 80(3):426-436. PubMed ID: 31596254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect and mechanisms of compound bioflocculant and AlCl3 salts on enhancing Chlorella regularis harvesting.
    Zhang C; Wang X; Wang Y; Li Y; Zhou D; Jia Y
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5653-60. PubMed ID: 27102131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harvesting Microalgae with Different Sources of Starch-Based Cationic Flocculants.
    Peng C; Li S; Zheng J; Huang S; Li D
    Appl Biochem Biotechnol; 2017 Jan; 181(1):112-124. PubMed ID: 27457760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies.
    Suparmaniam U; Lam MK; Uemura Y; Shuit SH; Lim JW; Show PL; Lee KT; Matsumura Y; Le PTK
    Sci Total Environ; 2020 Feb; 702():134995. PubMed ID: 31710849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harvesting of microalgae by flocculation with poly (γ-glutamic acid).
    Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H
    Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous flocculants-free electrolytic flotation system for microalgae harvesting.
    Luo S; Griffith R; Li W; Peng P; Cheng Y; Chen P; Addy MM; Liu Y; Ruan R
    Bioresour Technol; 2017 Aug; 238():439-449. PubMed ID: 28460364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of natural organic flocculants for harvesting microalgae grown in municipal wastewater at different culture densities.
    Niemi C; Gentili FG
    Physiol Plant; 2021 Oct; 173(2):536-542. PubMed ID: 33779990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.