These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28704740)

  • 1. Comparative assessment of selected sugarcane biorefinery-centered systems in Brazil: A multi-criteria method based on sustainability indicators.
    Gnansounou E; Alves CM; Pachón ER; Vaskan P
    Bioresour Technol; 2017 Nov; 243():600-610. PubMed ID: 28704740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries.
    Gnansounou E; Vaskan P; Pachón ER
    Bioresour Technol; 2015 Nov; 196():364-75. PubMed ID: 26255600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugarcane-Biorefinery.
    Vaz S
    Adv Biochem Eng Biotechnol; 2019; 166():125-136. PubMed ID: 28303295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental indicators for sustainability: a strategic analysis for the sugarcane ethanol context in Brazil.
    Gomes P; Malheiros T; Fernandes V; Sobral Mdo C
    Environ Technol; 2016; 37(1):16-27. PubMed ID: 26153435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic co-digestion of residues in 1G2G sugarcane biorefineries for enhanced electricity and biomethane production.
    Volpi MPC; Fuess LT; Moraes BS
    Bioresour Technol; 2021 Jun; 330():124999. PubMed ID: 33780712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 Aug; 142():390-9. PubMed ID: 23748087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products.
    Posada JA; Patel AD; Roes A; Blok K; Faaij AP; Patel MK
    Bioresour Technol; 2013 May; 135():490-9. PubMed ID: 23069604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 May; 135():316-23. PubMed ID: 23127845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative economic and environmental assessment of four beech wood based biorefinery concepts.
    Budzinski M; Nitzsche R
    Bioresour Technol; 2016 Sep; 216():613-21. PubMed ID: 27285577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental performances of coproducts. Application of Claiming-Based Allocation models to straw and vetiver biorefineries in an Indian context.
    Gnansounou E; Raman JK
    Bioresour Technol; 2018 Aug; 262():203-211. PubMed ID: 29705612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world.
    Subhadra B;
    J Sci Food Agric; 2011 Jan; 91(1):2-13. PubMed ID: 20981716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining research & development process targets through retro-techno-economic analysis: The sugarcane biorefinery case.
    Longati AA; Lino ARA; Giordano RC; Furlan FF; Cruz AJG
    Bioresour Technol; 2018 Sep; 263():1-9. PubMed ID: 29723843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries.
    Pereira LG; Dias MO; MacLean HL; Bonomi A
    Bioresour Technol; 2015 Aug; 190():242-50. PubMed ID: 25958148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?
    Farzad S; Mandegari MA; Guo M; Haigh KF; Shah N; Görgens JF
    Biotechnol Biofuels; 2017; 10():87. PubMed ID: 28400858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADM1 modelling of large-scale covered in-ground anaerobic reactor treating sugarcane vinasse.
    Elaiuy MLC; Borrion AL; Poggio D; Stegemann JA; Nour EAA
    Water Sci Technol; 2018 Mar; 77(5-6):1397-1409. PubMed ID: 29528327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of Biorefinery Policy Incentives and Location-Specific Economic Parameters for the Financial Viability of Biofuels.
    Stewart DW; Cortés-Peña YR; Li Y; Stillwell AS; Khanna M; Guest JS
    Environ Sci Technol; 2023 Feb; 57(6):2262-2271. PubMed ID: 36730787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of biofuels and biomolecules in the framework of circular economy: A regional case study.
    Jacquet N; Haubruge E; Richel A
    Waste Manag Res; 2015 Dec; 33(12):1121-6. PubMed ID: 26574581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainability Evaluation.
    Stichnothe H
    Adv Biochem Eng Biotechnol; 2019; 166():519-539. PubMed ID: 28303294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a regionally sensitive water-productivity indicator to identify sustainable practices for sugarcane growers.
    Brauman KA; Viart N
    Integr Environ Assess Manag; 2016 Oct; 12(4):811-20. PubMed ID: 26631903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biorefineries based on coffee cut-stems and sugarcane bagasse: furan-based compounds and alkanes as interesting products.
    Aristizábal M V; Gómez P Á; Cardona A CA
    Bioresour Technol; 2015 Nov; 196():480-9. PubMed ID: 26280100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.