These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 28704773)
1. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process. Burger W; Krysiak-Baltyn K; Scales PJ; Martin GJO; Stickland AD; Gras SL Water Res; 2017 Oct; 123():578-585. PubMed ID: 28704773 [TBL] [Abstract][Full Text] [Related]
2. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant. Kjellerup BV; Keiding K; Nielsen PH Water Sci Technol; 2001; 44(2-3):155-62. PubMed ID: 11547978 [TBL] [Abstract][Full Text] [Related]
3. Relationship between flocculation of activated sludge and composition of extracellular polymeric substances. Wilén BM; Jin B; Lant P Water Sci Technol; 2003; 47(12):95-103. PubMed ID: 12926675 [TBL] [Abstract][Full Text] [Related]
4. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. Basuvaraj M; Fein J; Liss SN Water Res; 2015 Oct; 82():104-17. PubMed ID: 25997747 [TBL] [Abstract][Full Text] [Related]
5. Filtration properties of activated sludge in municipal MBR wastewater treatment plants are related to microbial community structure. Bugge TV; Larsen P; Saunders AM; Kragelund C; Wybrandt L; Keiding K; Christensen ML; Nielsen PH Water Res; 2013 Nov; 47(17):6719-30. PubMed ID: 24094729 [TBL] [Abstract][Full Text] [Related]
6. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Cui Y; Ravnik J; Steinmann P; Hriberšek M Water Res; 2019 Jul; 158():159-170. PubMed ID: 31035193 [TBL] [Abstract][Full Text] [Related]
7. Impacts of structural characteristics on activated sludge floc stability. Wilén BM; Jin B; Lant P Water Res; 2003 Sep; 37(15):3632-45. PubMed ID: 12867329 [TBL] [Abstract][Full Text] [Related]
8. The effect of seasonal variations on floc morphology in the activated sludge process. Koivuranta E; Suopajärvi T; Hattuniemi J; Stoor T; Illikainen M Environ Technol; 2017 Dec; 38(24):3209-3215. PubMed ID: 28162036 [TBL] [Abstract][Full Text] [Related]
9. Effects of synthetic polymer on the filamentous bacteria in activated sludge. Juang DF Bioresour Technol; 2005 Jan; 96(1):31-40. PubMed ID: 15364077 [TBL] [Abstract][Full Text] [Related]
10. Potential role of AgNPs within wastewater in deteriorating sludge floc structure and settleability during activated sludge process: Filamentous bacteria and quorum sensing. Shi HX; Liu SY; Guo JS; Fang F; Chen YP; Yan P J Environ Manage; 2024 Jan; 349():119536. PubMed ID: 37972492 [TBL] [Abstract][Full Text] [Related]
11. Tracing morphological characteristics of activated sludge flocs by using a digital microscope and their effects on sludge dewatering and settling. Nakaya Y; Jia J; Satoh H Environ Technol; 2024 Aug; 45(20):4042-4052. PubMed ID: 37475153 [No Abstract] [Full Text] [Related]
12. Settling regimen transitions quantify solid separation limitations through correlation with floc size and shape. Mancell-Egala WASK; Su C; Takacs I; Novak JT; Kinnear DJ; Murthy SN; De Clippeleir H Water Res; 2017 Feb; 109():54-68. PubMed ID: 27865172 [TBL] [Abstract][Full Text] [Related]
13. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Wilén BM; Onuki M; Hermansson M; Lumley D; Mino T Water Res; 2008 Apr; 42(8-9):2300-8. PubMed ID: 18206208 [TBL] [Abstract][Full Text] [Related]
14. [Fractal structure and physicochemical characteristics analysis of aerobic sludge floc in A2/O process]. Xuan KJ; Wang YL; Wei KJ; Du JD; Zhang T Huan Jing Ke Xue; 2009 Jul; 30(7):2013-21. PubMed ID: 19775001 [TBL] [Abstract][Full Text] [Related]
15. Effect of chlorine on filamentous microorganisms present in activated sludge as evaluated by respirometry and INT-dehydrogenase activity. Caravelli A; Giannuzzi L; Zaritzky N Water Res; 2004 May; 38(9):2394-404. PubMed ID: 15142801 [TBL] [Abstract][Full Text] [Related]
16. Use of image analysis and rheological studies for the control of settleability of filamentous bacteria: application in SBR reactor. Dagot C; Pons MN; Casellas M; Guibaud G; Dollet P; Baudu M Water Sci Technol; 2001; 43(3):27-33. PubMed ID: 11381916 [TBL] [Abstract][Full Text] [Related]
17. Linking floc structure and settling properties to activated sludge population dynamics in an SBR. Govoreanu R; Seghers D; Nopens I; De Clercq B; Saveyn H; Capalozza C; Van der Meeren P; Verstraete W; Top E; Vanrolleghem PA Water Sci Technol; 2003; 47(12):9-18. PubMed ID: 12926664 [TBL] [Abstract][Full Text] [Related]
18. New insight into filamentous sludge bulking: Potential role of AHL-mediated quorum sensing in deteriorating sludge floc stability and structure. Shi HX; Wang J; Liu SY; Guo JS; Fang F; Chen YP; Yan P Water Res; 2022 Apr; 212():118096. PubMed ID: 35085842 [TBL] [Abstract][Full Text] [Related]
19. Monitoring activated sludge settling properties using image analysis. Jenné R; Banadda EN; Smets IY; Van Impe JF Water Sci Technol; 2004; 50(7):281-5. PubMed ID: 15553487 [TBL] [Abstract][Full Text] [Related]
20. Bacterial composition of activated sludge--importance for floc and sludge properties. Nielsen PH; Thomsen TR; Nielsen JL Water Sci Technol; 2004; 49(10):51-8. PubMed ID: 15259937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]