These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 28704974)
41. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068 [TBL] [Abstract][Full Text] [Related]
42. Peanut Rhizosphere Sun T; Wang Y; Niu D; Geng Q; Qiu H; Song F; Keller NP; Tian J; Yang K J Agric Food Chem; 2024 Aug; 72(31):17572-17587. PubMed ID: 39069673 [TBL] [Abstract][Full Text] [Related]
43. Immune response gene coexpression network analysis of Arachis hypogaea infected with Aspergillus flavus. Jayaprakash A; Roy A; Thanmalagan RR; Arunachalam A; Ptv L Genomics; 2021 Sep; 113(5):2977-2988. PubMed ID: 34153499 [TBL] [Abstract][Full Text] [Related]
44. Peanuts that keep aflatoxin at bay: a threshold that matters. Sharma KK; Pothana A; Prasad K; Shah D; Kaur J; Bhatnagar D; Chen ZY; Raruang Y; Cary JW; Rajasekaran K; Sudini HK; Bhatnagar-Mathur P Plant Biotechnol J; 2018 May; 16(5):1024-1033. PubMed ID: 28973784 [TBL] [Abstract][Full Text] [Related]
45. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Gilbert MK; Majumdar R; Rajasekaran K; Chen ZY; Wei Q; Sickler CM; Lebar MD; Cary JW; Frame BR; Wang K Planta; 2018 Jun; 247(6):1465-1473. PubMed ID: 29541880 [TBL] [Abstract][Full Text] [Related]
46. Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts. Dorner JW; Horn BW Mycopathologia; 2007 Apr; 163(4):215-23. PubMed ID: 17390234 [TBL] [Abstract][Full Text] [Related]
47. Genetic fingerprinting and aflatoxin production of Aspergillus section Flavi associated with groundnut in eastern Ethiopia. Mohammed A; Faustinelli PC; Chala A; Dejene M; Fininsa C; Ayalew A; Ojiewo CO; Hoisington DA; Sobolev VS; MartÃnez-Castillo J; Arias RS BMC Microbiol; 2021 Aug; 21(1):239. PubMed ID: 34454439 [TBL] [Abstract][Full Text] [Related]
48. Aspergillus flavus-induced chitosanase in germinating corn and peanut seeds: A. flavus mechanism for growth dominance over associated fungi and concomitant aflatoxin production. Cuero RG; Osuji GO Food Addit Contam; 1995; 12(3):479-83. PubMed ID: 7664946 [TBL] [Abstract][Full Text] [Related]
49. Temperature and aflatoxin production by Aspergillus flavus and A. parasiticus strains from Nigerian groundnuts. Ogundero VW J Basic Microbiol; 1987; 27(9):511-4. PubMed ID: 3136240 [TBL] [Abstract][Full Text] [Related]
50. Mechanisms of methyl 2-methylbutyrate suppression on Aspergillus flavus growth and aflatoxin B1 biosynthesis. Wei S; Zhang Y; Wu M; Lv Y; Zhang S; Zhai H; Hu Y Int J Food Microbiol; 2024 Jan; 409():110462. PubMed ID: 37918192 [TBL] [Abstract][Full Text] [Related]
51. Relationship between Meloidogyne arenaria and Aflatoxin Contamination in Peanut. Timper P; Wilson DM; Holbrook CC; Maw BW J Nematol; 2004 Jun; 36(2):167-70. PubMed ID: 19262803 [TBL] [Abstract][Full Text] [Related]
52. Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus. Wang Z; Yan S; Liu C; Chen F; Wang T J Proteome Res; 2012 May; 11(5):2739-53. PubMed ID: 22424419 [TBL] [Abstract][Full Text] [Related]
53. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus. Bedre R; Rajasekaran K; Mangu VR; Sanchez Timm LE; Bhatnagar D; Baisakh N PLoS One; 2015; 10(9):e0138025. PubMed ID: 26366857 [TBL] [Abstract][Full Text] [Related]
54. Aspergillus flavus SUMO Contributes to Fungal Virulence and Toxin Attributes. Nie X; Yu S; Qiu M; Wang X; Wang Y; Bai Y; Zhang F; Wang S J Agric Food Chem; 2016 Sep; 64(35):6772-82. PubMed ID: 27532332 [TBL] [Abstract][Full Text] [Related]
55. The biodiversity of Aspergillus section Flavi and aflatoxins in the Brazilian peanut production chain. Martins LM; Sant'Ana AS; Fungaro MH; Silva JJ; Nascimento MD; Frisvad JC; Taniwaki MH Food Res Int; 2017 Apr; 94():101-107. PubMed ID: 28290359 [TBL] [Abstract][Full Text] [Related]
56. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Khan SA; Chen H; Deng Y; Chen Y; Zhang C; Cai T; Ali N; Mamadou G; Xie D; Guo B; Varshney RK; Zhuang W Theor Appl Genet; 2020 Jul; 133(7):2239-2257. PubMed ID: 32285164 [TBL] [Abstract][Full Text] [Related]
57. Polymerase chain reaction-mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by a multiplex polymerase chain reaction. Chen RS; Tsay JG; Huang YF; Chiou RY J Food Prot; 2002 May; 65(5):840-4. PubMed ID: 12030297 [TBL] [Abstract][Full Text] [Related]
58. Identification of Two Novel Peanut Genotypes Resistant to Aflatoxin Production and Their SNP Markers Associated with Resistance. Yu B; Jiang H; Pandey MK; Huang L; Huai D; Zhou X; Kang Y; Varshney RK; Sudini HK; Ren X; Luo H; Liu N; Chen W; Guo J; Li W; Ding Y; Jiang Y; Lei Y; Liao B Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32121605 [TBL] [Abstract][Full Text] [Related]
59. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. Sharma S; Choudhary B; Yadav S; Mishra A; Mishra VK; Chand R; Chen C; Pandey SP J Hazard Mater; 2021 Feb; 404(Pt A):124155. PubMed ID: 33049626 [TBL] [Abstract][Full Text] [Related]
60. Impact of green antioxidants on decreasing the aflatoxins percentage in peanut oil seed ( Mohsen E; El-Metwally MA; Ibrahim AA; Soliman MI Sci Prog; 2023; 106(2):368504231176165. PubMed ID: 37226455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]