BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 2870520)

  • 1. The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective.
    Macgregor HC; Sessions SK
    Philos Trans R Soc Lond B Biol Sci; 1986 Jan; 312(1154):243-59. PubMed ID: 2870520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochromatic DNA in Triturus (Amphibia, Urodela). I. A satellite DNA component of the pericentric C-bands.
    Barsacchi-Pilone G; Batistoni R; Andronico F; Vitelli L; Nardi I
    Chromosoma; 1986; 93(5):435-46. PubMed ID: 3013516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterochromatic DNA in Triturus (Amphibia, Urodela) II. A centromeric satellite DNA.
    Cremisi F; Vignali R; Batistoni R; Barsacchi G
    Chromosoma; 1988 Nov; 97(3):204-11. PubMed ID: 3219917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of a short, highly repeated and centromerically localised DNA sequence in crested and marbled newts of the genus Triturus.
    Varley JM; Macgregor HC; Barnett L
    Chromosoma; 1990 Dec; 100(1):15-31. PubMed ID: 2101348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts.
    Steinfartz S; Vicario S; Arntzen JW; Caccone A
    J Exp Zool B Mol Dev Evol; 2007 Mar; 308(2):139-62. PubMed ID: 16969762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centromeric satellite DNA in the newt Triturus cristatus karelinii and related species: its distribution and transcription on lampbrush chromosomes.
    Baldwin L; Macgregor HC
    Chromosoma; 1985; 92(2):100-7. PubMed ID: 2988877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification and molecular organization of satellites elucidated by phylogenetic network analysis - examples from Triturus salamanders and Palorus beetles.
    Arntzen JW
    Chromosoma; 2002 Nov; 111(4):284-8. PubMed ID: 12424528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage in Triturus cristatus carnifex.
    Varley JM; Macgregor HC; Nardi I; Andrews C; Erba HP
    Chromosoma; 1980; 80(3):289-307. PubMed ID: 6160022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster.
    Lohe AR; Hilliker AJ; Roberts PA
    Genetics; 1993 Aug; 134(4):1149-74. PubMed ID: 8375654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species.
    Samoluk SS; Robledo G; Bertioli D; Seijo JG
    Mol Genet Genomics; 2017 Apr; 292(2):283-296. PubMed ID: 27838847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.
    Plohl M; Luchetti A; Mestrović N; Mantovani B
    Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation.
    Yunis JJ; Yasmineh WG
    Science; 1971 Dec; 174(4015):1200-9. PubMed ID: 4943851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays.
    Modi WS
    Cytogenet Cell Genet; 1993; 62(2-3):142-8. PubMed ID: 8428514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chromosomal localization and evolutionary age of satellite DNAs of Mustelidae].
    Lushnikova TP; Grafodatskiĭ AS; Romashchenko AG; Radzhabli SI
    Genetika; 1988 Dec; 24(12):2134-40. PubMed ID: 3250906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of two abundant satellite DNAs from the mealworm Tenebrio obscurus.
    Plohl M; Ugarković D
    J Mol Evol; 1994 Nov; 39(5):489-95. PubMed ID: 7807538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Distribution of satellite DNA TkS1 in genomes of salamanders (Salamandridae)].
    Litvinchuk SN; Lashina OS; Kazakov VI
    Tsitologiia; 2004; 46(7):634-9. PubMed ID: 15473374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative variation of "Mus musculus-like" constitutive heterochromatin and satellite DNA-sequences in the genus Mus.
    Sen S; Sharma T
    Chromosoma; 1980; 81(3):393-402. PubMed ID: 7449568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive.
    Smalec BM; Heider TN; Flynn BL; O'Neill RJ
    Chromosome Res; 2019 Sep; 27(3):237-252. PubMed ID: 30771198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of satellite DNAs from the genus Palorus--experimental evidence for the "library" hypothesis.
    Mestrović N; Plohl M; Mravinac B; Ugarković D
    Mol Biol Evol; 1998 Aug; 15(8):1062-8. PubMed ID: 9718733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.