BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28705502)

  • 1. Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid.
    Mali KK; Dhawale SC; Dias RJ
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):463-470. PubMed ID: 28705502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of citric acid crosslinked carboxymethyl tamarind gum-polyvinyl alcohol hydrogel films.
    Mali KK; Ghorpade VS; Dias RJ; Dhawale SC
    Int J Biol Macromol; 2023 May; 236():123969. PubMed ID: 36898456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of carboxymethyl guar gum nanocomposite for application of wound healing.
    Orsu P; Matta S
    Int J Biol Macromol; 2020 Dec; 164():2267-2276. PubMed ID: 32763402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery.
    Ghorpade VS; Yadav AV; Dias RJ
    Int J Biol Macromol; 2016 Dec; 93(Pt A):75-86. PubMed ID: 27576947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpenetrating hydrogels of O-carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir.
    Jana S; Sharma R; Maiti S; Sen KK
    Int J Biol Macromol; 2016 Nov; 92():1034-1039. PubMed ID: 27514441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Citric acid crosslinked carboxymethylcellulose-poly(ethylene glycol) hydrogel films for delivery of poorly soluble drugs.
    Ghorpade VS; Yadav AV; Dias RJ; Mali KK; Pargaonkar SS; Shinde PV; Dhane NS
    Int J Biol Macromol; 2018 Oct; 118(Pt A):783-791. PubMed ID: 29959996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs.
    Ghorpade VS; Yadav AV; Dias RJ
    Carbohydr Polym; 2017 May; 164():339-348. PubMed ID: 28325334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of crystalline nanocellulose/hydroxypropyl β cyclodextrin/carboxymethyl cellulose polyelectrolyte complexes and their controlled release of neohesperidin-copper (II) in vitro.
    Xia N; Wan W; Zhu S; Liu Q
    Int J Biol Macromol; 2020 Nov; 163():1518-1528. PubMed ID: 32771507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole.
    Vaghani SS; Patel MM; Satish CS
    Carbohydr Res; 2012 Jan; 347(1):76-82. PubMed ID: 22099382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcing the inner phase of the filled hydrogels with CNTs alters drug release properties and human keratinocyte morphology: A study on the gelatin- tamarind gum filled hydrogels.
    Maharana V; Gaur D; Nayak SK; Singh VK; Chakraborty S; Banerjee I; Ray SS; Anis A; Pal K
    J Mech Behav Biomed Mater; 2017 Nov; 75():538-548. PubMed ID: 28850924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcing effect of graphene oxide reinforcement on the properties of poly (vinyl alcohol) and carboxymethyl tamarind gum based phase-separated film.
    Yadav I; Nayak SK; Rathnam VSS; Banerjee I; Ray SS; Anis A; Pal K
    J Mech Behav Biomed Mater; 2018 May; 81():61-71. PubMed ID: 29494830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of carboxymethyl chitosan/Fe
    Naderi Z; Azizian J
    J Photochem Photobiol B; 2018 Aug; 185():206-214. PubMed ID: 29966987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications.
    Dharmalingam K; Anandalakshmi R
    Int J Biol Macromol; 2019 Aug; 134():815-829. PubMed ID: 31077697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel formation by radiation induced crosslinked copolymerization of acrylamide onto moringa gum for use in drug delivery applications.
    Singh B; Kumar A
    Carbohydr Polym; 2018 Nov; 200():262-270. PubMed ID: 30177166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel tamarind seed gum-alginate based multi-particulates for sustained release of dalfampridine using response surface methodology.
    Doniparthi J; B JJ
    Int J Biol Macromol; 2020 Feb; 144():725-741. PubMed ID: 31843610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and characterization of hydrogel based on pectin and brea gum.
    Slavutsky AM; Bertuzzi MA
    Int J Biol Macromol; 2019 Feb; 123():784-791. PubMed ID: 30414901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neem gum based pH responsive hydrogel matrix: A new pharmaceutical excipient for the sustained release of anticancer drug.
    Mankotia P; Choudhary S; Sharma K; Kumar V; Kaur Bhatia J; Parmar A; Sharma S; Sharma V
    Int J Biol Macromol; 2020 Jan; 142():742-755. PubMed ID: 31739022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sesbania gum based hydrogel as platform for sustained drug delivery: An 'in vitro' study of 5-Fu release.
    Pal P; Pandey JP; Sen G
    Int J Biol Macromol; 2018 Jul; 113():1116-1124. PubMed ID: 29505871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications.
    Singh B; Sharma V
    Carbohydr Polym; 2017 Feb; 157():185-195. PubMed ID: 27987904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of cellulose composite hydrogels from tea residue and carbohydrate additives.
    Liu Z; Huang H
    Carbohydr Polym; 2016 Aug; 147():226-233. PubMed ID: 27178928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.